
Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

1

1

www.picaxe.co.uk

Contents:

SECTION 2 - BASIC COMMANDS

Introduction. ... 3

Labels .. 4
Comments ... 4
Constants .. 5
Symbols .. 5
Variables ... 6
backward .. 9
branch .. 10
button .. 11
calibfreq ... 13
count ... 14
debug ... 15
data ... 16
eeprom ... 16
end ... 17
for...next .. 18
forward ... 19
gosub ... 20
goto ... 21
halt ... 22
high ... 23
high portc ... 24
i2cslave .. 25
if...then .. 27
if...and...then .. 27
if...or...then .. 27
infrain .. 29
infrain2 .. 31
infraout .. 32
input .. 37
keyin .. 38
keyled .. 40
let ... 41
let dirs = .. 43
let dirsc = ... 43
let pins = .. 44
let pinsc = .. 44
lookdown .. 45
lookup .. 46
low ... 47
low portc .. 48
nap ... 49
output .. 50
pause ... 51
peek ... 52
play ... 53
poke ... 54
pulsin ... 55
pulsout ... 56
pwm ... 57
pwmout .. 58

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

2

2

www.picaxe.co.uk

random ... 59
readadc .. 60
readadc10 ... 62
readi2c ... 63
read ... 64
readmem ... 65
readtemp .. 66
 readtemp12 .. 67
readowclk ... 68
resetowclk ... 69
readowsn .. 70
return ... 72
reverse ... 73
serin .. 74
serout .. 76
sertxd ... 77
servo .. 78
setint ... 79
setfreq .. 82
shiftin .. 83
shiftout .. 85
sleep .. 86
sound ... 87
stop ... 88
switch on/off .. 89
symbol ... 90
toggle .. 91
tune ... 92
wait ... 99
write .. 100
writemem .. 101
writei2c .. 102

Additional Reserved Keywords .. 103

Software Version .. 103
Contact Address: .. 103
Acknowledgements: .. 103

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

3

3

www.picaxe.co.uk

BASIC COMMANDS

Introduction.

The PICAXE manual is divided into three sections:

Section 1 - Getting Started

Section 2 - BASIC Commands

Section 3 - Microcontroller interfacing circuits

This second section provides the syntax (with detailed examples) for all the BASIC

commands supported by the PICAXE system. It is intended as a lookup reference guide

for each BASIC command supported by the PICAXE system. As some commands only

apply to certain size PICAXE chips, a diagram beside each command indicates the sizes

of PICAXE that the command applies to.

When using the flowchart method of programming, only a small sub-set of the available

commands are supported by the on-screen simulation. These commands are indicated by

the corresponding flowchart icon by the description.

For more general information about how to use the PICAXE system, please see section 1

‘Getting Started’.

The software used for programming the PICAXE is called the ‘Programming Editor’. This

software is free to download from www.picaxe.co.uk. Please see section 1 of the manual

(‘Getting Started’) for installation details and tutorials. This manual was prepared using

Version 4.1.0 of the Programming Editor software.

The latest version of this document is available on the PICAXE website at

www.picaxe.co.uk

If you have a question about any command please post a question on the very active

support forum at this website.

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

4

4

www.picaxe.co.uk

Labels

Labels are used as markers throughout the program. Labels are used to mark a

position in the program to ‘jump to’ at a later point using a goto, gosub or other

command. Labels can be any word (that is not already a reserved keyword) and

may contain digits and the underscore character. Labels must start with a letter

(not digit), and are defined with a colon (:) at the marker position. The colon is

not required within the actual commands.

The compiler is not case sensitive (lower and/or upper case may be used at any

time).

Example:

loop:

high 1 ‘ switch on output 1

pause 5000 ‘ wait 5 seconds

low 1 ‘ switch off output 1

pause 5000 ‘ wait 5 seconds

goto loop ‘ loop back to start

Whitespace

Whitespace is the term used by programmers to define the white area on a

printout of the program. This involves spaces, tabs and empty lines. Any of these

features can be used to space the program to make it clearer and easier to read.

It is convention to only place labels on the left hand side of the screen. All other

commands should be indented by using the ‘tab key’. This convention makes the

program much easier to read and follow.

Comments

Comments are used to add information into the program for future reference.

They are completely ignored by the computer during a download. Comments

begin with an apostrophe (‘) or semi-colon (;) and continue until the end of the

line. The keyword REM may also be used for a comment.

Examples:

high 0 ‘ make output 0 high

high 0 ; make output 0 high

high 0 REM make output 0 high

��
���
��

���
���
���
���
���

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

5

5

www.picaxe.co.uk

Constants

Constants are ‘fixed’ numbers that are used within the program. The software

supports word integers (any whole number between 0 and 65335).

Constants can be declared in four ways: decimal, hex, binary, and ASCII.

Decimal numbers are typed directly without any prefix.

Hexadecimal (hex) numbers are preceded with a dollar-sign ($) or (0x).

Binary numbers are preceded by a percent-sign (%).

ASCII text strings are enclosed in quotes (“).

Examples:

100 ‘ 100 decimal

$64 ‘ 64 hex

%01100100 ‘ 01100100 binary

“A” ‘ “A” ascii (65)

“Hello” ‘ “Hello” - equivalent to “H”,”e”,”l”,”l”,”o”

B1 = B0 ^ $AA ‘ xor variable B0 with AA hex

Symbols

Symbols can be assigned to constant values, and can also be used as alias names

for variables (see Variables overleaf for more details). Constant values and

variable names are assigned by following the symbol name with an equal-sign

(=), followed by the variable or constant.

Symbols can use any word that is not a reserved keyword (e.g. switch, step,

output, input, etc.)

Symbols can contain numeric characters and underscores (flash1, flash_2 etc.)

but the first character cannot be a numeric (e.g. 1flash)

Use of symbol does not increase program length. See the symbol command entry

later in this manual for more information.

Example:

symbol RED_LED = 7 ‘ define a constant symbol

symbol COUNTER = b0 ‘ define a variable symbol

let COUNTER = 200 ‘ preload variable with value 200

loop: ‘ define a program address

‘ address symbol end with colons

high RED_LED ‘ switch on output 7

pause COUNTER ‘ wait 0.2 seconds

low RED_LED ‘ switch off output 7

pause COUNTER ‘ wait 0.2 seconds

goto loop ‘ loop back to start

��
���
��

���
���
���
���
���

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

6

6

www.picaxe.co.uk

Variables

The RAM memory is used to store temporary data in variables as the program

runs. It looses all data when the power is removed or reset. There are three types

of variable - general purpose, storage, and special function.

See the ‘let’ command for details about variable mathematics.

General Purpose Variables.

There are 14 general purpose byte variables. These byte variables are labelled b0

to b13. Byte variables can store integer numbers between 0 and 255. Byte

variables cannot use negative numbers or fractions, and will ‘overflow’ without

warning if you exceed the 0 or 255 boundary values (e.g. 254 + 3 = 1) (2 - 3 =

255)

However for larger numbers two byte variables can be combined to create a word

variable, which is capable of storing integer numbers between 0 and 65335. These

word variables are labelled w0 to w6, and are constructed as follows:

w0 = b1 : b0

w1 = b3 : b2

w2 = b5 : b4

w3 = b7 : b6

w4 = b9 : b8

w5 = b11 : b10

w6 = b13 : b12

Therefore the most significant byte of w0 is b1, and the least significant byte of

w0 is b0.

In addition bytes b0 and b1 (w0) are broken down into individual bit variables.

These bit variables can be used where you just require a single bit (0 or 1) storage

capability.

b0 = bit7: bit6: bit5: bit4: bit3: bit2: bit1: bit0

b1 = bit15: bit14: bit13: bit12: bit11: bit10: bit9: bit8

You can use any word, byte or bit variable within any mathematical assignment or

command that supports variables. However take care that you do not accidentally

repeatedly use the same ‘byte’ or ‘bit’ variable that is being used as part of a ‘word’

variable elsewhere.

All general purpose variables are reset to 0 upon a program reset.

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

7

7

www.picaxe.co.uk

Storage Variables.

Storage variables are additional memory locations allocated for temporary storage

of byte data. They cannot be used in mathematical calculations, but can be used

to temporarily store byte values by use of the peek and poke commands.

The number of available storage locations varies depending on PICAXE type. The

following table gives the number of available byte variables with their addresses.

These addresses vary according to technical specifications of the microcontroller.

See the poke and peek command descriptions for more information.

PICAXE-08 none

PICAXE-08M 48 80 to 127 ($50 to $7F)

PICAXE-18 48 80 to 127 ($50 to $7F)

PICAXE-18A 48 80 to 127 ($50 to $7F)

PICAXE-18X 96 80 to 127 ($50 to $7F), 192 to 239 ($C0 to $EF)

PICAXE-28A 48 80 to 127 ($50 to $7F)

PICAXE-28X 112 80 to 127 ($50 to $7F), 192 to 239 ($C0 to $FF)

PICAXE-40X 112 80 to 127 ($50 to $7F), 192 to 239 ($C0 to $FF)

Special Function Variables

The special function variables available for use depend on the PICAXE type.

PICAXE-08 / 08M Special Function Registers

pins = the input / output port

dirs = the data direction register (sets whether pins are inputs or outputs)

infra = another term for variable b13, used within the 08M infrain2 command

The variable pins is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented.

pins = x : x : x : pin4 : pin3 : pin2 : pin1 : x

The variable dirs is also broken down into individual bits.

Only valid bi-directional pin configuration bits are implemented.

dirs = x : x : x : dir4 : x : dir2 : dir1 : x

��
���

		
		
		
		
		
		

		
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

8

8

www.picaxe.co.uk

PICAXE-18 / 18A / 18X Special Function Registers

pins = the input port when reading from the port

pins = the output port when writing to the port

infra = a separate variable used within the infrain command

keyvalue = another name for infra, used within the keyin command

Note that pins is a ‘pseudo’ variable that can apply to both the input and output

port.

When used on the left of an assignment pins applies to the ‘output’ port e.g.

let pins = %11000011

will switch outputs 7,6,1,0 high and the others low.

When used on the right of an assignment pins applies to the input port e.g.

let b1 = pins

will load b1 with the current state of the input port.

Additionally, note that

let pins = pins

means ‘let the output port equal the input port’

The variable pins is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented.

pins = pin7 : pin6 : x : x : x : pin2 : pin1 : pin0

PICAXE-28A / 28X / 40X Special Function Registers

pins = the input port when reading from the port

pins = the output port when writing to the port

infra = a separate variable used within the infrain command

keyvalue = another name for infra, used within the keyin command

Note that pins is a ‘pseudo’ variable that can apply to both the input and output

port.

When used on the left of an assignment pins applies to the ‘output’ port e.g.

let pins = %11000011

will switch outputs 7,6,1,0 high and the others low.

When used on the right of an assignment pins applies to the input port e.g.

let b1 = pins

will load b1 with the current state of the input port.

Additionally, note that

let pins = pins

means ‘let the output port equal the input port’

The variable pins is broken down into individual bit variables for reading from

individual inputs with an if...then command.

pins = pin7 : pin6 : pin5 : pin4 : pin3 : pin2 : pin1 : pin0

		
		
		
		
		

���
���
���

		
		
��

���
���
		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

9

9

www.picaxe.co.uk

backward

Syntax:

BACKWARD motor
- Motor is the motor name A or B.

Function:

Make a motor output turn backwards

Information:

This is a ‘pseudo’ command designed for use by younger students with pre-

assembled classroom models. It is actually equivalent to ‘low 4 : high 5’ (motor

A) or ‘low 6: high 7’ (motor B). This command is not normally used outside of

the classroom.

Example:

loop: forward A ‘ motor a on forwards

wait 5 ‘ wait 5 seconds

backward A ‘ motor a on backwards

wait 5 ‘ wait 5 seconds

halt A ‘ motor A stop

wait 5 ‘ wait 5 seconds

goto loop ‘ loop back to start

		
		
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

10

10

www.picaxe.co.uk

branch

Syntax:

BRANCH offset,(address0,address1...addressN)
- Offset is a variable/constant which specifies which Address# to use (0-N).

- Addresses are labels which specify where to go.

Function:

Branch to address specified by offset (if in range).

Information:

This command allows a jump to different program positions depending on the

value of the variable ‘offset’. If offset is value 0, the program flow will jump to

address0, if offset is value 1 program flow will jump to adddress1 etc.

If offset is larger than the number of addresses the whole command is ignored

and the program continues at the next line.

Example:

reset: let b1 = 0

low 0

low 1

low 2

low 3

main: let b1 = b1 + 1

if b1 > 3 then reset

branch b1,(btn0,btn1, btn2, btn3)

btn0: high 0

goto main

btn1: high 1

goto main

btn2: high 2

goto main

btn3: high 3

goto main

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

11

11

www.picaxe.co.uk

button

Syntax:

BUTTON pin,downstate,delay,rate,bytevariable,targetstate,address
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

- Downstate is a variable/constant (0 or 1) which specifies what logical state is

read when the button is pressed.

- Delay is a variable/constant (0-255) which specifies time before a repeat if

BUTTON is used within a loop.

- Rate is a variable/constant (0-255) which specifies the auto-repeat rate in

BUTTON cycles.

- Bytevariable is the workspace. It must be cleared to 0 before being used by

BUTTON for the first time.

- Targetstate is a variable/constant (0 or 1) which specifies what state (0=not

pressed, 1=pressed) the button should be in for a branch to occur.

- Address is a label which specifies where to go if the button is in the target

state.

Function:

Debounce button, auto-repeat, and branch if button is in target state.

Infomation:

When mechanical switches are activated the metal ‘contacts’ do not actually close

in one smooth action, but ‘bounce’ against each other a number of times before

settling. This can cause microcontrollers to register multiple ‘hits’ with a single

physical action, as the microcontroller can register each bounce as a new hit.

One simple way of overcoming this is to simply put a small pause (e.g. pause 10)

within the program, this gives time for the switch to settle.

Alternately the button command can be used to overcome these issues. When the

button command is executed, the microcontroller looks to see if the ‘downstate’

is matched. If this is true the switch is debounced, and then program flow jumps

to ‘address’ if ‘targetstate’ = 1. If targetstate = ‘0’ the program continues.

If the button command is within a loop, the next time the command is executed

‘downstate’ is once again checked. If the condition is still true, the variable

‘bytevariable’ is incremented. This can happen a number of times until

‘bytevariable’ value is equal to ‘delay’. At this point a jump to ‘address’ is made if

‘targetstate’ = 1. Bytevariable is then reset to 0 and the whole process then repeats,

but this time the jump to ‘address’ is made when the ‘bytevariable’ value is equal

to ‘rate’.

This gives action like a compter keyboard key press - send one press, wait for

‘delay’, then send multiple presses at time interval ‘rate’.

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

12

12

www.picaxe.co.uk

Note that button should be used within a loop. It does not pause program flow

and so only checks the input switch condition as program flow passes through

the command.

Example:

loop: button 0,0,200,100,b2,0,cont

‘ jump to cont unless pin0 = 0

toggle 1 ‘ else toggle input

goto loop

cont: etc.

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

13

13

www.picaxe.co.uk

calibfreq

Syntax:

CALIBFREQ {-} factor
- factor is a constant/variable containing the value -31 to 31

Function:

Calibrate the microcontrollers internal resonator. 0 is the default factory setting.

Information:

Some PICAXE chips have an internal resonator that can be set to 4 or 8Mhz

operation via the setfreq command.

On these chips it is also possible to ‘calibrate’ this frequency. This is an advanced

feature not normally required by most users, as all chips are factory calibrated to

the most accurate setting. Generally the only use for calibfreq is to slightly adjust

the frequency for serial transactions with third party devices. A larger positive

value increases speed, a larger negative value decreases speed. Try the values -4 to

+ 4 first, before going to a higher or lower value.

Use this command with extreme care. It can alter the frequency of the PICAXE

chip beyond the serial download tolerance - in this case you will need to perform

a ‘hard-reset’ in order to carry out a new download.

The calibfreq is actually a pseudo command that performs a ‘poke’ command on

the microcontrollers OSCTUNE register (address $90).

When the value is 0 to 31 the equivalent BASIC code is

poke $90, factor

pause 2

When the factor is -31 to -1 the equivalent BASIC code is

let b12 = 64 - factor

poke $90, factor

pause 2

Note that in this case variable b12 is used, and hence corrupted, by the

command. This is necessary to poke the OSCTUNE register with the correct value.

		
���

		
���
���
		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

14

14

www.picaxe.co.uk

count

Syntax:

COUNT pin, period, variable
- Pin is a variable/constant (0-7) which specifies the input pin to use.

- Period is a variable/constant (1-65535ms at 4MHz).

- Variable receives the result (use a word variable) (0-65535).

Function:

Count pulses on an input pin.

Information:

Count checks the state of the input pin and counts the number of low to high

transitions within the time ‘period’. A word variable should be used for ‘variable’.

At 4MHz the input pin is checked every 20us, so the highest frequency of pulses

that can be counted is 25kHz, presuming a 50% duty cycle (ie equal on-off time).

Take care with mechanical switches, which may cause multiple ‘hits’ for each

switch push as the metal contacts ‘bounce’ upon closure.

Affect of increased clock speed:

The period value is 0.5ms at 8MHz and 0.25ms at 16MHz.

At 8MHz the input pin is checked every 10us, so the highest frequency of pulses

that can be counted is 50kHz, presuming a 50% duty cycle (ie equal on-off time).

At 16MHz the input pin is checked every 5us, so the highest frequency of pulses

that can be counted is 100kHz, presuming a 50% duty cycle (ie equal on-off

time).

Example:

loop:

count 1, 5000, w1 ‘ count pulses in 5 seconds

debug w1 ‘ display value

goto loop ‘ else loop back to start

		
���

		
		

���
		

���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

15

15

www.picaxe.co.uk

debug

Syntax:

DEBUG {var}
- Var is an optional variable value (e.g. b1). It’s value is not of importance and

is included purely for compatibility with older programs.

Function:

Display variable information in the debug window when the debug command is

processed. Byte information is shown in decimal, binary, hex and ascii notation.

Word information is shown in decimal and hex notation.

Information:

The debug command uploads the current variable values for *all* the variables

via the download cable to the computer screen. This enables the computer screen

to display all the variable values in the microcontroller for debugging purposes.

Note that the debug command uploads a large amount of data and so

significantly slows down any program loop.

To display user defined debugging messages use the ‘sertxd’ command instead.

Affect of increased clock speed:

When using an 8 or 16Mhz clock speed ensure the software has been set with the

correct speed setting to enable successful communication between

microcontroller and PC.

Example:

loop:

let b1 = b1 + 1 ‘ increment value of b1

readadc 2,b2 ‘ read an analogue value

debug b1 ‘ display values on computer screen

pause 500 ‘ wait 0.5 seconds

goto loop ‘ loop back to start

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

16

16

www.picaxe.co.uk

data

eeprom

Syntax:

DATA {location},(data,data...)
EEPROM {location},(data,data...)
- Location is an optional constant (0-255) which specifies where to begin

storing the data in the eeprom. If no location is specified, storage continues

from where it last left off. If no location was initially specified, storage begins

at 0.

- Data are constants (0-255) which will be stored in the eeprom.

Function:

Preload EEPROM data memory. If no EEPROM command is used the values are

automatically cleared to the value 0. The keywords DATA and EEPROM have

identical functions and either can be used.

Information:

This is not an instruction, but a method of pre-loading the microcontrollers data

memory. The command does not affect program length.

With the PICAXE-08, 08M and 18 the data memory is shared with program

memory. Therefore only unused bytes may be used within a program. To establish

the length of the program use ‘Check Syntax’ from the PICAXE menu. This will

report the length of program. Available data addresses can then be used as

follows:

PICAXE-08 0 to (127 - number of used bytes)

PICAXE-08M 0 to (255 - number of used bytes)

PICAXE-18 0 to (127 - number of used bytes)

With the following microcontrollers the data memory is completely separate

from the program and so no conflicts arise. The number of bytes available varies

depending on microcontroller type as follows.

PICAXE-28, 28A 0 to 63

PICAXE-28X, 40X 0 to 127

PICAXE-18A, 18X 0 to 255

Example:

EEPROM 0,(“Hello World”) ‘ save values in EEPROM

main:

for b0 = 0 to 10 ‘ start a loop

 read b0,b1 ‘ read value from EEPROM

 serout 7,N2400,(b1) ‘ transmit to serial LCD module

next b0 ‘ next character

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

17

17

www.picaxe.co.uk

end

Syntax:

END

Function:

Sleep terminally until the power cycles (program re-runs) or the PC connects for a

new download. Power is reduced to an absolute minimum (assuming no loads

are being driven) and internal timers are switched off.

Information:

The end command places the microcontroller into low power mode after a

program has finished. Note that as the compiler always places an END instruction

after the last line of a program, this command is rarely required.

The end command switches off internal timers, and so commands such as servo

and pwmout that require these timers will not function after an end command

has been completed.

If you do not wish the end command to be carried out, place a ‘stop’ command at

the bottom of the program. The stop command does not enter low power mode.

The main use of the end command is to separate the main program loop from

sub-procedures as in the example below. This ensures that programs do not

accidentally ‘fall into’ the sub-procedure.

Example:

loop:

let b2 = 15 ‘ set b2 value

pause 2000 ‘ wait for 2 seconds

gosub flsh ‘ call sub-procedure

let b2 = 5 ‘ set b2 value

pause 2000 ‘ wait for 2 seconds

end ‘ stop accidentally falling into sub

flsh:

for b0 = 1 to b2 ‘ define loop for b2 times

 high 1 ‘ switch on output 1

 pause 500 ‘ wait 0.5 seconds

 low 1 ‘ switch off output 1

 pause 500 ‘ wait 0.5 seconds

next b0 ‘ end of loop

return ‘ return from sub-procedure

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

18

18

www.picaxe.co.uk

for...next

Syntax:

FOR variable = start TO end {STEP {-}increment}
 (other program lines)
NEXT {variable}
- Variable will be used as the loop counter

- Start is the initial value of variable

- End is the finish value of variable

- Increment is an optional value which overrides the default counter value of

+1. If Increment is preceeded by a ‘-’, it will be assumed that Start is greater

than End, and therefore increment will be subtracted (rather than added) on

each loop.

Function:

Repeat a section of code within a FOR-NEXT loop.

Information:

For...next loops are used to repeat a section of code a number of times. When a

byte variable is used, the loop can be repeated up to 255 times. Every time the

‘next’ line is reached the value of variable is incremented (or decremented) by the

step value (+1 by default). When the end value is exceeded the looping stops and

program flow continues from the line after the next command.

For...next loops can be nested 8 deep (remember to use a different variable for

each loop).

Example:

loop:

for b0 = 1 to 20 ‘ define loop for 20 times

 high 1 ‘ switch on output 1

 pause 500 ‘ wait 0.5 seconds

 low 1 ‘ switch off output 1

 pause 500 ‘ wait 0.5 seconds

next b0 ‘ end of loop

pause 2000 ‘ wait for 2 seconds

goto loop ‘ loop back to start

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

19

19

www.picaxe.co.uk

forward

Syntax:

FORWARD motor
- Motor is the motor name A or B.

Function:

Make a motor output turn forwards

Information:

This is a ‘pseudo’ command designed for use by younger students with pre-

assembled classroom models. It is actually equivalent to ‘high 4 : low 5’ (motor

A) or ‘high 6: low 7’ (motor B). This command is not normally used outside the

classroom.

Example:

forward A ‘ motor a on forwards

wait 5 ‘ wait 5 seconds

backward A ‘ motor a on backwards

wait 5 ‘ wait 5 seconds

halt A ‘ motor A reverse

wait 5 ‘ wait 5 seconds

goto loop ‘ loop back to start

		
		
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

20

20

www.picaxe.co.uk

gosub

Syntax:

GOSUB address
- Address is a label which specifies where to gosub to.

Function:

Go to sub procedure at ‘address’, then ‘return’ at a later point.

Information:

The gosub (‘goto subprocedure’)

command is a ‘temporary’ jump to a

separate section of code, from which

you will later return (via the return

command). Every gosub command

MUST be matched by a corresponding

return command.

Do not confuse with the ‘goto’

command which is a permanent jump

to a new program location.

The table shows the maximum

number of gosubs available in each

microcontroller . Gosubs can be

nested 4 deep (ie there is a four level

stack available in the microcontroller).

Note that for the option for 255 gosubs on the X parts you will require PICAXE-

18X firmware >=8.2 or PICAXE-28X/40X firmware >=7.4

Sub procedures are commonly used to reduce program space usage by putting

repeated sections of code in a single sub-procedure. By passing values to the sub-

procedure within variables, you can repeat a section of code from multiple places

within the program. See the sample below for more information.

Example:

loop:

let b2 = 15 ‘ set b2 value

pause 2000 ‘ wait for 2 seconds

gosub flsh ‘ call sub-procedure

let b2 = 5 ‘ set b2 value

pause 2000 ‘ wait for 2 seconds

gosub flsh ‘ call sub-procedure

end ‘ stop accidentally falling into sub

flsh:

for b0 = 1 to b2 ‘ define loop for b2 times

 high 1 ‘ switch on output 1

 pause 500 ‘ wait 0.5 seconds

 low 1 ‘ switch off output 1

 pause 500 ‘ wait 0.5 seconds

next b0 ‘ end of loop

return ‘ return from sub-procedure

Standard
Gosub

Interrupt
Gosub

Stack

PICAXE-08 16 0 4

PICAXE-08M 15 1 4

PICAXE-18 16 0 4

PICAXE-18A 15 1 4

PICAXE-18X 15 or 255 1 4

PICAXE-28A 15 1 4

PICAXE-28X 15 or 255 1 4

PICAXE-40X 15 or 255 1 4

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

21

21

www.picaxe.co.uk

goto

Syntax:

GOTO address
- Address is a label which specifies where to go.

Function:

Go to address.

Information:

The goto command is a permanent ‘jump’ to a new section of the program. The

jump is made to a label.

Example:

loop:

high 1 ‘ switch on output 1

pause 5000 ‘ wait 5 seconds

low 1 ‘ switch off output 1

pause 5000 ‘ wait 5 seconds

goto loop ‘ loop back to start

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

22

22

www.picaxe.co.uk

halt

Syntax:

HALT motor
- Motor is the motor name A or B.

Function:

Make a motor output stop.

Information:

This is a ‘pseudo’ command designed for use by younger students with pre-

assembled classroom models. It is actually equivalent to ‘low 4 : low 5’ (motor A)

or ‘low 6: low 7’ (motor B). This command is not normally used outside the

classroom.

Example:

forward A ‘ motor a on forwards

wait 5 ‘ wait 5 seconds

backward A ‘ motor a on backwards

wait 5 ‘ wait 5 seconds

halt A ‘ motor A reverse

wait 5 ‘ wait 5 seconds

goto loop ‘ loop back to start

		
		
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

23

23

www.picaxe.co.uk

high

Syntax:

HIGH pin
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:

Make pin output high.

Information:

The high command switches an output on (high).

On microcontrollers with configurable input/output pins (e.g. PICAXE-08) this

command also automatically configures the pin as an output.

Example:

loop: high 1 ‘ switch on output 1

pause 5000 ‘ wait 5 seconds

low 1 ‘ switch off output 1

pause 5000 ‘ wait 5 seconds

goto loop ‘ loop back to start

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

24

24

www.picaxe.co.uk

high portc

Syntax:

HIGH PORTC pin
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:

Make pin on portc output high.

Information:

The high command switches a portc output on (high).

Example:

loop: high portc 1 ‘ switch on output 1

pause 5000 ‘ wait 5 seconds

low portc 1 ‘ switch off output 1

pause 5000 ‘ wait 5 seconds

goto loop ‘ loop back to start

		
		
		
		
		
		

���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

25

25

www.picaxe.co.uk

i2cslave

Syntax:

I2CSLAVE slave, speed, address
- Slave is the i2c slave address

- Speed is the keyword i2cfast (400kHz) or i2cslow (100kHz) at 4Mhz

- Address is the keyword i2cbyte or i2cword

Function:

The i2cslave command is used to configure the PICAXE pins for i2c use and to

define the type of i2c device to be addressed.

Description:

Use of i2c parts is covered in more detail in the separate ‘i2c Tutorial’ datasheet.

If you are using a single i2c device you generally only need one i2cslave

command within a program. With the PICAXE-18X device you should issue the

command at the start of the program to configure the SDA and SCL pins as inputs

to conserve power.

After the i2cslave has been issued, readi2c and write12c can be used to access the

i2c device.

Slave Address

The slave address varies for different i2c devices (see table below). For the

popular 24LCxx series serial EEPROMs the address is commonly %1010xxxx.

Note that some devices, e.g. 24LC16B, incorporate the block address (ie the

memory page) into bits 1-3 of the slave address. Other devices include the

external device select pins into these bits. In this case care must be made to

ensure the hardware is configured correctly for the slave address used.

Bit 0 of the slave address is always the read/write bit. However the value entered

using the i2cslave command is ignored by the PICAXE, as it is overwritten as

appropriate when the slave address is used within the readi2c and writei2c

commands.

Speed

Speed of the i2c bus can be selected by using one of the two keywords i2cfast or

i2cslow (400kHz or 100kHz). The internal slew rate control of the

microcontroller is automatically enabled at the 400kHz speed (28/40X). Note

that the 18X internal architecture means that the slower speed is always used with

the 18X, as it is not capable of processing at the faster speed.

Affect of Increased Clock Speed:

Ensure you modify the speed keyword (i2cfast8, i2cslow8) at 8MHz or

(i2cfast16, i2cslow16) at 16MHz for correct operation.

		
		
		
		

���
		

���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

26

26

www.picaxe.co.uk

Address Size

i2c devices commonly have a single byte (i2cbyte) or double byte (i2cword)

address. This must be correctly defined for the type of i2c device being used. If

you use the wrong definition erratic behaviour will be experienced.

When using the i2cword address size you must also ensure the ‘address’ used in

the readi2c and writei2c commands is a word variable.

Settings for some common parts:

Device Type Slave Speed Address
24LC01B EE 128 %1010xxxx i2cfast i2cbyte

24LC02B EE 256 %1010xxxx i2cfast i2cbyte

24LC04B EE 512 %1010xxbx i2cfast i2cbyte

24LC08B EE 1kb %1010xbbx i2cfast i2cbyte

24LC16B EE 2kb %1010bbbx i2cfast i2cbyte

24LC64 EE 8kb %1010dddx i2cfast i2cword

24LC256 EE 64kb %1010dddx i2cfast i2cword

DS1307 RTC %1101000x i2cslow i2cbyte

MAX6953 5x7 LED %101ddddx i2cfast i2cbyte

AD5245 Digital Pot %010110dx i2cfast i2cbyte

SRF08 Sonar %1110000x i2cfast i2cbyte

AXE033 I2C LCD $C6 i2cslow i2cbyte

CMPS03 Compass %1100000x i2cfast i2cbyte

SPE030 Speech %1100010x i2cfast i2cbyte

x = don’t care (ignored)

b = block select (selects internal memory page within device)

d = device select (selects device via external address pin polarity)

See readi2c or writei2c for example program for DS1307 real time clock.

��

��

��
�
��
	
�
��
	

��

�

��

�����������

�����������

������������� ���!���"#
�� ��� �$%�� "�&%�'��(���
"�&��� #%#���#�����' �%��(�
�%�#)�*' # ��(#��!
� ��+ "����(# ��' ����
" +%� ��%� ��'%#)

��

�

��

���

���

,
��
�
-
	��� ��' �����" +%�

����'�+ ��'%�� ��!� .
&�%� ����� �����"/��
�""� ##��%�#��'���&%��
��#��� 0(%� ����� ��%��
����������
��#
�������%��)

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

27

27

www.picaxe.co.uk

if...then

if...and...then

if...or...then

Syntax:

IF variable ?? value {AND/OR variable ?? value ...} THEN address
- Variable(s) will be compared to value(s).

- Value is a variable/constant.

- Address is a label which specifies where to go if condition is true.

?? can be any of the following conditions

= equal to

is equal to

<> not equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

Function:

Compare and conditionally jump to a new program position.

Information:

The if...then command is used to test input pin variables (or general variables) for

certain conditions. If these conditions are met program flow jumps to the new

label. If the condition is not met the command is ignored and program flow

continues on the next line.

When using inputs the input variable (pin1, pin2 etc) must be used (not the

actual pin name 1, 2 etc.) i.e. the line must read ‘if pin1 = 1 then...’, not ‘if 1 = 1

then...’

The if...then command only checks an input at the time the command is

processed. Therefore it is normal to put the if...then command within a program

loop that regularly scans the input. For details on how to permanently scan for an

input condition using interrupts see the ‘setint’ command.

Examples:

Checking an input within a loop.

loop:

if pin0 = 1 then flsh ‘ jump to flsh if pin0 is high

goto loop ‘ else loop back to start

flsh: high 1 ‘ switch on output 1

pause 5000 ‘ wait 5 seconds

low 1 ‘ switch off output 1

goto loop ‘ loop back to start

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

28

28

www.picaxe.co.uk

Multiple compares can be combined with the AND and OR keywords.

2 input AND gate

if pin1 = 1 and pin2 = 1 then label

3 input AND gate

if pin0 =1 and pin1 =1 and pin2 = 1 then label

2 input OR gate

if pin1 =1 or pin2 =1 then label

analogue value between certain values

readadc 1,b1
if b1 >= 100 and b1 <= 200 then label

To read the whole input port at once the variable ‘pins’ can be used

if pins = %10101010 then label

To read the whole input port and mask individual inputs (e.g. 6 and 7)

let b1 = pins & %11000000
if b1 = %11000000 then label

The words is (=), on (1) and off (0) can also be used with younger students.

loop:

if pin0 is on then flsh ‘ jump to flsh if pin0 is high

goto loop ‘ else loop back to start

flsh: high 1 ‘ switch on output 1

pause 5000 ‘ wait 5 seconds

low 1 ‘ switch off output 1

goto loop ‘ loop back to start

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

29

29

www.picaxe.co.uk

���

�
�

�
�

�
�

�
�

	

�

�

�

��

�

��

�
�

infrain

Syntax:

INFRAIN

Function:

Wait until a new infrared command is received. LED020

Description:

This command is primarily used to wait for

a new infrared signal from the infrared TV

style transmitter. It can also be used with

an infraout signal from a separate PICAXE-

08M chip. All processing stops until the

new command is received. The value of the

command received is placed in the

predefined variable ‘infra’.

The infra-red input is input 0 on all parts

that support this command.

The variable ‘infra’ is separate from the

other byte variables.

After using this command you may have to

perform a ‘hard reset’ to download a new

program to the microcontroller. See the

Serial Download section for more details.

Affect of Increased Clock Speed:

This command will only function at 4MHz

Use of TVR010 Infrared Remote Control:

The table shows the value that will be

placed into the variable ‘infra’ depending

on which key is pressed on the transmitter.

Before use (or after changing batteries) the

TVR010 transmitter must be programmed

with ‘Sony’ codes as follows:

1. Insert 3 AAA size batteries, preferably

alkaline.

2. Press ‘C’. The LED should light.

3. Press ‘2’. The LED should flash.

4. Press ‘1’. The LED should flash.

5. Press ‘2’. The LED should flash and

then go out.

Key Value

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

P+ 10

0 11

V+ 12

P- 13

10+ 14

V- 15

Mute 16

Power 17

��

�
�

��

11
�2

)�(3

4
�
1

����

%��(��������

4
�
1

		
		
		

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

30

30

www.picaxe.co.uk

Example:

loop:

infrain 'wait for new signal

if infra = 1 then swon1 'switch on 1

if infra = 2 then swon2 'switch on 2

if infra = 3 then swon3 'switch on 3

if infra = 4 then swoff1 'switch off 1

if infra = 5 then swoff2 'switch off 2

if infra = 6 then swoff3 'switch off 3

goto loop

swon1: high 1

goto loop

swon2: high 2

goto loop

swon3: high 3

goto loop

swoff1: low 1

goto loop

swoff2: low 2

goto loop

swoff3: low 3

goto loop

���

� � �

� � �

� � 	

� �

� ����

� ���
�

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

31

31

www.picaxe.co.uk

infrain2

Syntax:

INFRAIN2

Function:

Wait unti a new infrared command is received.

Description:

This command is used to wait for an

infraout signal from a separate PICAXE-

08M chip. It can also be used with an

infrared signal from the infrared TV style

transmitter. All processing stops until the

new command is received. The value of the

command received is placed in the

predefined variable ‘infra’. This will be a

number between 0 and 127. See the

infraout command for more details about

the values that will be received from the

TVR010 remote control.

On the PICAXE-08M ‘infra’ is another name for ‘b13’ - it is the same variable.

The infra-red input is fixed to input 3 on the PICAXE-08M.

After using this command you may have to perform a ‘hard reset’ to download a

new program to the microcontroller. See the Serial Download section for more

details.

Affect of Increased Clock Speed:

This command will only function at 4MHz. Use a setfreq m4 command before

this command if using 8MHz speed,

Example:

loop:

infrain2 'wait for new signal

if infra = 1 then swon1 'switch on 1

if infra = 2 then swon2 'switch on 2

if infra = 4 then swoff1 'switch off 1

if infra = 5 then swoff2 'switch off 2

goto loop

swon1: high 1

goto loop

swon2: high 2

goto loop

swoff1: low 1

goto loop

swoff2: low 2

goto loop

		
���

		
		
		
		
		
		

��

�
�

��

11
�2

)�(3

4
�
1

����

%��(��1�����

4
�
1

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

32

32

www.picaxe.co.uk

infraout

Syntax:

INFRAOUT device,data
- device is a constant/variable (valid device ID 1-31)

- data is a constant/variable (valid data 0-127)

Function:

Transmit an infra-red signal, modulated at 38kHz.

Description:

This command is used to transmit the infra-red data to Sony ™ device (can also be

used to transmit data to another PICAXE that is using the infrain or infrain2

command). Data is transmitted via an infra-red LED (connected on output 0)

using the SIRC (Sony Infra Red Control) protocol.

device - 5 bit device ID (0-31)

data - 7 bit data (0-127)

When using this command to transmit data to another PICAXE the device ID

used must be value 1 (TV). The infraout command can be used to transmit any of

the valid TV command 0-127. Note that the Sony protocol only uses 7 bits for

data, and so data of value 128 to 255 is not valid.

Therefore the valid infraout command for use with infrain2 is

infraout 1,x ‘ (where x = 0 to 127)

Sony SIRC protocol:

The SIRC protocol uses a 38KHz modulated infra-red signal consisting of a start

bit (2.4ms) followed by 12 data bits (7 data bits and 5 device ID bits). Logic level

1 is transmitted as a 1.2 ms pulse, logic 0 as a 0.6ms pulse. Each bit is separated

by a 0.6ms silence period.

Example:

All commercial remote controls repeat the signal every 45ms whilst the button is

held down. Therefore when using the PICAXE system higher reliability may be

gained by repeating the transmission (e.g. 10 times) within a for..next loop.

for b1 = 1 to 10
 infraout 1,5
 pause 45
next b1

Start Data0 Data1 Data2 Data3 Data4 Data5 Data6 ID0 ID1 ID2 ID3 ID4

2.4ms
1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

		
���

		
		
		
		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

33

33

www.picaxe.co.uk

Interaction between infrain, infrain2 and infraout command.

Infrain and Infraout

The original infrain command

was designed to react to signals

from the TV style remote control

TVR010. Therefore it only

acknowledges the data sent from

the 17 buttons on this remote

(1-9, 0. 10+, P+, P-, V+, V-,

MUTE, PWR) with a value

between 1 and 17.

The infraout command can be

used to ‘emulate’ the TVR010

remote to transit signals that will

be acceptable for the infrain

command. The values to be used

for each TV remote button are

shown in the table.

Infrain2 and Infraout

The infrain2 command will react

to any of the valid TV data

commands (0 to 127).

The infraout command can be

used to transmit any of the valid

TV command 0-127. Note that

the Sony protocol only uses 7

bits for data, and so data of 128

to 255 is not valid.

Therefore the valid infraout

command for use with infrain2

is (where x = 0 to 127)

infraout 1,x

Affect of Increased Clock Speed:

This command will only function at 4MHz.

Common Sony Device IDs.:

TV 1 VTR3 11

VTR1 2 Surround Sound 12

Text 3 Audio 16

Widescreen 4 CD Player 17

MDP / Laserdisk 6 Pro-Logic 18

VTR2 7 DVD 26

TVR010 TV
Remote
Control

infraout equivalent
command

infrain
variable data

value

infrain2
variable data

value

1 infraout 1,0 1 0

2 infraout 1,1 2 1

3 infraout 1,2 3 2

4 infraout 1,3 4 3

5 infraout 1,4 5 4

6 infraout 1,5 6 5

7 infraout 1,6 7 6

8 infraout 1,7 8 7

9 infraout 1,8 9 8

P+ infraout 1,16 10 16

0 infraout 1,9 11 9

V+ infraout 1,18 12 18

P- infraout 1,17 13 17

10+ infraout 1,12 14 12

V- infraout 1,19 15 19

MUTE infraout 1,20 16 20

PWR infraout 1,21 17 21

���

�
�

�
�

�
�

�
�

	

�

�

�

��

�

��

�
�

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

34

34

www.picaxe.co.uk

Button infraout data for a typical Sony TV (device ID 1)

 000 1 button

 001 2 button

 002 3 button

 003 4 button

 004 5 button

 005 6 button

 006 7 button

 007 8 button

 008 9 button

 009 10 button/0 button

 011 Enter

 016 channel up

 017 channel down

 018 volume up

 019 volume down

 020 Mute

 021 Power

 022 Reset TV

 023 Audio Mode:Mono/SAP/Stereo

 024 Picture up

 025 Picture down

 026 Color up

 027 Color down

 030 Brightness up

 031 Brightness down

 032 Hue up

 033 Hue down

 034 Sharpness up

 035 Sharpness down

 036 Select TV tuner

 038 Balance Left

 039 Balance Right

 041 Surround on/off

 042 Aux/Ant

 047 Power off

 048 Time display

 054 Sleep Timer

 058 Channel Display

 059 Channel jump

 064 Select Input Video1

 065 Select Input Video2

 066 Select Input Video3

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

35

35

www.picaxe.co.uk

Button infraout data for a typical Sony TV (continued...)

 074 Noise Reduction on/off

 078 Cable/Broadcast

 079 Notch Filter on/off

 088 PIP channel up

 089 PIP channel down

 091 PIP on

 092 Freeze screen

 094 PIP position

 095 PIP swap

 096 Guide

 097 Video setup

 098 Audio setup

 099 Exit setup

 107 Auto Program

 112 Treble up

 113 Treble down

 114 Bass up

 115 Bass down

 116 + key

 117 - key

 120 Add channel

 121 Delete channel

 125 Trinitone on/off

 127 Displays a red RtestS on the screen

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

36

36

www.picaxe.co.uk

Button infraout data for a typical Sony VCR (device ID 2 or 7)

 000 1 button

 001 2 button

 002 3 button

 003 4 button

 004 5 button

 005 6 button

 006 7 button

 007 8 button

 008 9 button

 009 10 button/0 button

 010 11 button

 011 12 button

 012 13 button

 013 14 button

 020 X 2 play w/sound

 021 power

 022 eject

 023 L-CH/R-CH/Stereo

 024 stop

 025 pause

 026 play

 027 rewind

 028 FF

 029 record

 032 pause engage

 035 X 1/5 play

 040 reverse visual scan

 041 forward visual scan

 042 TV/VTR

 045 VTR from TV

 047 power off

 048 single frame reverse/slow reverse play

 049 single frame advance/slow forward play

 060 aux

 070 counter reset

 078 TV/VTR

 083 index (scan)

 106 edit play

 107 mark

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

37

37

www.picaxe.co.uk

input

Syntax:

INPUT pin
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:

Make pin an input.

Information:

This command is only required on microcontrollers with programmable input/

output pins (e.g. PICAXE-08M). This command can be used to change a pin that

has been configured as an output back to an input.

All pins are configured as inputs on first power-up (apart from out0 on the

PICAXE-08, which is always an output).

Example:

loop:

input 1 ‘ make pin input

reverse 1 ‘ make pin output

reverse 1 ‘ make pin input

output 1 ‘ make pin output

��
���

		
		
		
		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

38

38

www.picaxe.co.uk

keyin

Syntax:

KEYIN

Function:

Wait until a new keyboard press is received.

Information:

This command is used to wait for a new key press from a computer keyboard

(connected directly to the PICAXE - not the keyboard used whilst programming,

see keyled command for connection details). All processing stops until the new

key press is received. The value of the key press received is placed in the

predefined variable ‘keyvalue’.

Note the design of the keyboard means that the value of each key is not logical,

each key value must be identified from the table on the next page. Some keys use

two numbers, the first $E0 is ignored by the PICAXE and so keyvalue will return

the second number. Note all the codes are in hex and so should be prefixed with

$ whilst programming. The PAUSE and PRNT SCRN keys cannot be used reliably

as they have a special long multi-digit code.. Also note that some keys may not

work correctly when the ‘Nums Lock’ LED is set on with the keyled command.

The sample file ‘keyin.bas’ (installed in the \samples folder) provides details on

how you can convert the key presses into ASCII characters by means of a look up

table.

After using this command you may have to perform a ‘hard reset’ to download a

new program to the microcontroller. See the Serial Download section for more

details.

Affect of Increased Clock Speed:

This command will only function at 4MHz.

Example:

loop:

keyin 'wait for new signal

if keyvalue = $45 then swon1 'switch on 1

if keyvalue = $16 then swon2 'switch on 2

if keyvalue = $25 then swoff1 'switch off 1

if keyvalue = $2E then swoff2 'switch off 2

goto loop

swon1: high 1

goto loop

swon2: high 2

goto loop

swoff1: low 1

goto loop

swoff2: low 2

goto loop

		
		
		

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

39

39

www.picaxe.co.uk

��� ���� ��� ���� ��� ����

� �� � �� � ��

	
� �
� ��
��� ����

� �
 �
�
��� ����

� �
 � �� ���� ����

 �
 � ��
�

� ����

! 	
 ��"	 �� ��
 ����

� ��
���� �
 ���� ����

� �� 	�� �� #����� ����

� �� ���� $� #���� 	���

% 	� �!���
� #�����
���

"
� ��� �� #����� ����

 	� ��� !���
 ��� ��

� �� � � �� &�" ����

� �� �!��� �� '�" ��

� �� ���� ����
 ��" 	�

� �� ���� �
��
 (�" ��

) �� � �� ����
 �
�" ����

� �
 ���� !
��
 *�" ��

� 	� �
��
 �� ��" ��

� �
 ��
 �� ��" ��

� �� �! ��
�"
�

+ �

! �� ��" ��

# �� �! �� ��" 	�

,

 �! �� ��" ��

- �� �! �� ��" ��

. �� �! 	� ��" ��

� �� �! �$ $�" ��

� �� $! �� ��" ��

� �! �� / 	�

� �
 ��! �� 0 ��

� �
 ��! $� 1
�

�

�! �� � ��

� �� ������� 22 * ��

� �� ����
� & ��

$
�
���� 22

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

40

40

www.picaxe.co.uk

keyled

Syntax:

keyled mask
- Mask is a variable/constant which specifies the LEDs to use.

Function:

Set/clear the keyboard LEDs

Information:

This command is used to control the LEDs on a computer keyboard (connected

directly to the PICAXE - not the keyboard used whilst programming). The mask

value sets the operation of the LEDs.

Mask is used as follows:

Bit 0 - Scroll Lock (1=on, 0=off)

Bit 1 - Num Lock (1=on, 0=off)

Bit 2 - Caps Lock (1=on, 0=off)

Bit 3-6 - Not Used

Bit 7 - Disable Flash (1=no flash, 0=flash)

On reset mask is set to 0, and so all three LEDs will flash when the ‘keyin’

command detects a new key hit. This provides the user with feedback that the key

press has been detected by the PICAXE. This flashing can be disabled by setting

bit 7 of mask high. In this case the condition of the three LEDs can be manually

controlled by setting/clearing bits 2-0.

Affect of Increased Clock Speed:

This command will only function at 4MHz.

Example:

loop:

keyled %10000111 ‘ all LEDs on

pause 500 ‘ pause 0.5s

keyled %10000000 ‘ all LEDs off

pause 500 ‘ pause 0.5s

goto loop ‘ loop

��

��

5
	
6
�
7
�
2
�

��

�

��

�����

����

������#������ ���!���"#
�� ��� �$%�� "�&%�'��(���
"�&��� #%#���#�����' �%��(�
�%�#)�*' # ��(#��!
� ��+ "����(# ��'
� �!���"��%� ��'%#)

��

�

��

%��(�8

%��(��

,
��
�
-
	

1

�

4

�	��������	�����
����
4��������9���,���-	�%��(��:
��������(# "
1������;��(�"

���
����(����
����������9���,���-	�%��(�8:
8�������(# "

���� ��9�����!:

,�(<�9�����!� :

� �

� �

� �

� �

� �

� �

		
		
		

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

41

41

www.picaxe.co.uk

let

Syntax:

{LET} variable = {-} value ?? value ...
- Variable will be operated on.

- Value(s) are variables/constants which operate on variable.

Function:

Perform variable manipulation (wordsize-to-wordsize). Maths is performed

strictly from left to right. The ‘let’ keyword is optional.

Information:

The microcontroller supports word (16 bit) mathematics. Valid integers are 0 to

65335. All mathematics can also be performed on byte (8 bit) variables (0-255).

The microcontroller does not support fractions or negative numbers.

However it is sometimes possible to rewrite equations to use integers instead of

fractions, e.g.

let w1 = w2 / 5.7
is not valid, but

let w1 = w2 * 10 / 57
is mathematically equal and valid.

The mathematical functions supported are:

+ ; add

- ; subtract

* ; multiply (returns low word of result)

** ; multiply (returns high word of result)

/ ; divide (returns quotient)

// (or %) ; modulus divide (returns remainder)

MAX ; limit value to a maximum value

MIN ; limit value to a minimum value

& (or AND) ; bitwise AND

| (or OR) ; bitwise OR (typed as SHIFT + \ on UK keyboard)

^ (or XOR) ; bitwise XOR (typed as SHIFT + 6 on UK keyboard)

&/ (or ANDNOT); bitwise AND NOT (NB this is not the same as NAND)

|/ (or ORNOT) ; bitwise OR NOT (NB this is not the same as NOR)

^/ (or XNOR) ; bitwise XOR NOT (same as XNOR)

There is no shift left (<<) or shift right (>>) function. However the same function

can be achieved by multiplying by 2 (shift left) or dividing by 2 (shift right).

All mathematics is performed strictly from left to right. It is not possible to

enclose part equations in brackets e.g.

let w1 = w2 / (2 + b3)
is not valid. This would be entered as

let b3 = 2 + b3
let w1 = w2 / b3

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

42

42

www.picaxe.co.uk

The addition (+) and subtraction (-) commands work as expected. Note that the

variables will overflow without warning if the maximum or minimum value is

exceeded (0-255 for bytes variables, 0-65335 for word variables).

When multiplying two 16 bit word numbers the result is a 32 bit (double word)

number. The multiplication (*) command returns the low word of a word*word

calculation. The ** command returns the high word of the calculation.

The division (/) command returns the quotient (whole number) word of a

word*word division. The modulus (// or %) command returns the remainder of

the calculation.

The MAX command is a limiting factor, which ensures that a value never exceeds

a preset value. In this example the value never exceeds 50. When the result of the

multiplication exceeds 50 the max command limits the value to 50.

let b1 = b2 * 10 MAX 50
if b2 = 3 then b1 = 30

if b2 = 4 then b1 = 40

if b2 = 5 then b1 = 50

if b2 = 6 then b1 = 50 ‘ limited to 50

The MIN command is a similar limiting factor, which ensures that a value is never

less than a preset value. In this example the value is never less than 50. When the

result of the divison is less than 50 the min command limits the value to 50.

let b1 = 100 / b2 MIN 50
if b2 = 1 then b1 = 100

if b2 = 2 then b1 = 50

if b2 = 3 then b1 = 50 ‘ limited to 50

The AND, OR, XOR, XNOR commands function bitwise on each bit in the

variables. ANDNOT and ORNOT mean, for example ‘A AND the NOT of B’ etc.

This is not the same as NOT (A AND B), as with the traditional NAND command.

A common use of the AND (&) command is to mask individual bits:

let b1 = pins & %00000110
This masks inputs 1 and 2, so the variable only contains the data of these two

inputs.

Example:

loop:

let b0 = b0 + 1 ‘ increment b0

sound 7,(b0,50) ‘ make a sound

if b0 > 50 then rest ‘ after 50 reset

goto loop ‘ loop back to start

rest:

let b0 = b0 max 10 ‘ limit b0 back to 10

‘ as 10 is the maximum value

goto loop ‘ loop back to start

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

43

43

www.picaxe.co.uk

let dirs =

let dirsc =

Syntax:

{LET} dirs = value
{LET} dirsc = value
- Value(s) are variables/constants which operate on the data direction register.

Function:

Configue pins as inputs or outputs (let dirs =) (PICAXE-08/08M)

Configue pins as inputs or outputs on portc (let dirsc =) (PICAXE-28X/40X)

Information:

Some microcontrollers allow inputs to be configured as inputs or outputs. In

these cases it is necessary to tell the microcontroller which pins to use as inputs

and/or outputs (all are configured as inputs on first power up). There are a

number of ways of doing this:

1) Use the input/output/reverse commands.

2) Use an output command (high, pulsout etc) that automatically configures the

pin as an output.

3) Use the let dirs = statement.

When working with this statement it is conventional to use binary notation. With

binary notation pin 7 is on the left and pin 0 is on the right. If the bit is set to 0

the pin wil be an input, if the bit is set to 1 the pin will be an output.

Note that the 8 pin PICAXE have some pre-configured pins (e.g. pin 0 is always

an output and pin 3 is always an input). Adjusting the bits for these pins will have

no affect on the microcontroller.

Example:

let dirs = %00000011 ‘ switch pins 0 and 1 to outputs

let pins = %00000011 ‘ switch on outputs 0 and 1

��
���

		
		
		
		

���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

44

44

www.picaxe.co.uk

let pins =

let pinsc =

Syntax:

{LET} pins = value
{LET} pinsc = value
- Value(s) are variables/constants which operate on the output port.

Function:

Set/clear all outputs on the main output port (let pins =).

Set/clear all outputs on portc (let pinsc =) (PICAXE-28X/40X only)

Information:

High and low commands can be used to switch individual outputs high and low.

However when working with multiple outputs it is often convenient to change all

outputs simultaneously. When working with this statement it is conventional to

use binary notation. With binary notation output7 is on the left and output0 is

on the right. If the bit is set to 0 the output will be off (low), if the bit is set to 1

the output will be on (high).

Do not confuse the input port with the output port. These are separate ports on

all except the 8 pin PICAXE. The command

let pins = pins
means ‘make the output port the same as the input port’.

Note that on devices that have input/output bi-directional pins (08/08M), this

command will only function on output pins. In this case it is necessary to

configure the pins as outputs (using a let dirs = command) before use of this

command.

Example:

let pins = %11000011 ‘ switch outputs 7,6,0,1 on

pause 1000 ‘ wait 1 second

let pins = %00000000 ‘ switch all outputs off

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

45

45

www.picaxe.co.uk

lookdown

Syntax:

LOOKDOWN target,(value0,value1...valueN),variable
- Target is a variable/constant which will be compared to Values.

- Values are variables/constants.

- Variable receives the result (if any).

Function:

Get target’s match number (0-N) into variable (if match found).

Information:

The lookdown command should be used when you have a specific value to

compare with a pre-known list of options. The target variable is compared to the

values in the bracket. If it matches the 5th item (value4) the number ‘4’ is

returned in variable. Note the values are numbered from 0 upwards (not 1

upwards). If there is no match the value of variable is left unchanged.

In this example the variable b2 will contain the value 3 if b1 contains “d” and the

value 4 if b1 contains “e”

Example:

lookdown b1,(“abcde”),b2

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

46

46

www.picaxe.co.uk

lookup

Syntax:

LOOKUP offset,(data0,data1...dataN),variable
- Offset is a variable/contant which specifies which data# (0-N) to place in

Variable.

- Data are variables/constants.

- Variable receives the result (if any).

Function:

Lookup data specified by offset and store in variable (if in range).

Description:

The lookup command is used to load varaiable with different values. The value to

be loaded in the position in the klookup table defined by offset. In this example

if b0 = 0 then b1 will equal “a”, if b0 =1 then b1 will equal “b” etc. If offset

exceeds the number of entries in the lookup table the value of variable is

unchanged.

Example:

loop:

let b0 = b0 + 1 ‘ increment b0

lookup b0,(“abcd”),b1 ‘ put ascii character into b1

if b0 < 4 then loop ‘ loop

end

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

47

47

www.picaxe.co.uk

low

Syntax:

LOW pin
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:

Make pin output low.

Information:

The low command switches an output off (low).

On microcontrollers with configurable input/output pins (e.g. PICAXE-08) this

command also automatically configures the pin as an output.

Example:

loop: high 1 ‘ switch on output 1

pause 5000 ‘ wait 5 seconds

low 1 ‘ switch off output 1

pause 5000 ‘ wait 5 seconds

goto loop ‘ loop back to start

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

48

48

www.picaxe.co.uk

low portc

Syntax:

LOW PORTC pin
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:

Make pin on portc output low.

Information:

The high command switches a portc output off (low).

Example:

loop: high portc 1 ‘ switch on output 1

pause 5000 ‘ wait 5 seconds

low portc 1 ‘ switch off output 1

pause 5000 ‘ wait 5 seconds

goto loop ‘ loop back to start

		
		
		
		
		
		

���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

49

49

www.picaxe.co.uk

nap

Syntax:

NAP period
- Period is a variable/constant which determines the duration of the reduced-

power nap (0-7).

Function:

Nap for a short period. Power consumption is reduced, but some timing accuracy

is lost. A longer delay is possible with the sleep command.

Information:

The nap command puts the

microcontroller into low power mode

for a short period of time. When in

low power mode all timers are

switched off and so the pwmout and

servo commands will cease to

function. The nominal period of time

is given by this table. Due to

tolerances in the microcontrollers

internal timers, this time is subject to

-50 to +100% tolerance. The external

temperature affects these tolerances

and so no design that requires an

accurate time base should use this

command.

Affect of increased clock speed:

The nap command uses the internal watchdog timer which is not affected by

changes in resonator clock speed.

Example:

loop: high 1 ‘ switch on output 1

nap 4 ‘ nap for 288ms

low 1 ‘ switch off output 1

nap 7 ‘ nap for 2.3 s

goto loop ‘ loop back to start

Period Time Delay

0 18ms

1 32ms

2 72ms

3 144ms

4 288ms

5 576ms

6 1.152 s

7 2.304 s

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

50

50

www.picaxe.co.uk

output

Syntax:

OUTPUT pin
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:

Make pin an output.

Information:

This command is only required on microcontrollers with programmable input/

output pins (e.g. PICAXE-08M). This command can be used to change a pin that

has been configured as an input to an output.

All pins are connfigured as inputs on first power-up (apart from out0 on the

PICAXE-08, which is always an output).

Example:

loop:

input 1 ‘ make pin input

reverse 1 ‘ make pin output

reverse 1 ‘ make pin input

output 1 ‘ make pin output

��
���

		
		
		
		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

51

51

www.picaxe.co.uk

pause

Syntax:

PAUSE milliseconds
- Milliseconds is a variable/constant (0-65535) which specifies how many

milliseconds to pause. (at 4MHz)

Function:

Pause for some time. The duration of the pause is as accurate as the resonator

time-base, and presumes a 4MHz resonator.

Information:

The pause command creates a time delay (in milliseconds at 4MHz). The longest

time delay possible is just over 65 seconds. To create a longer time delay (e.g. 5

minutes) use a for...next loop

for b1 = 1 to 5 ‘ 5 loops

pause 60000 ‘ wait 60 seconds

next b1

During a pause the only way to react to inputs is via an interrupt (see the setint

command for more information). Do not put long pauses within loops that are

scanning for changing input conditions.

When using time delays longer than 5 seconds it may be necessary to perform a

‘hard reset’ to download a new program to the microcontroller. See the Serial

Download section for more details.

Affect of increased clock speed:

The timebase is reduced to 0.5ms at 8MHz and 0.25ms at 16MHz.

Example:

loop: high 1 ‘ switch on output 1

pause 5000 ‘ wait 5 seconds

low 1 ‘ switch off output 1

pause 5000 ‘ wait 5 seconds

goto loop ‘ loop back to start

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

52

52

www.picaxe.co.uk

peek

Syntax:

PEEK location,variable
- Location is a variable/constant specifying a register address. Valid values are 0

to 255 (see below).

- Variable is a byte variable where the data is returned.

Function:

Read data from the microcontroller registers. This allows use of additional storage

variables not defined by b0-b13.

Information:

The function of the poke/peek commands is two fold.

The most commonly used function is to store temporary byte data in the

microcontrollers spare ‘storage variable’ memory. This allows the general purpose

variables (b0 to b13) to be re-used in calculations. Remember that to save a word

variable two separate poke/peek commands will be required - one for each of the

two bytes that form the word.

Addresses $50 to $7F are general purpose registers that can be used freely.

Addresses $C0 to $EF can also be used by PICAXE-18X.

Addresses $C0 to $FF can also be used by PICAXE-28X, 40X.

The second function of the peek command is for experinced users to study the

internal microcontroller SFR (special function regsisters).

Addresses $00 to $1F and $80 to $9F are special function registers (e.g. PORTB)

which determine how the microcontroller operates. Avoid using these addresses

unless you know what you are doing! The command uses the microcontroller FSR

register which can address register banks 0 and 1 only.

Addresses $20 to $4F and $A0 to $BF are general purpose registers reserved for

use with the PICAXE bootstrap interpreter. Poking these registers will produce

unexpected results and could cause the interpreter to crash.

Example:

peek 80,b1 ‘ put value of register 80 into variable b1

		
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

53

53

www.picaxe.co.uk

play

Syntax:

PLAY tune,LED
- Tune is a variable/constant (0 - 3) which specifies which tune to play

0 - Happy Birthday

1 - Jingle Bells

2 - Silent Night

3 - Rudolf the Red Nosed Reindeer

- LED is a variable/constant (0 -3) which specifies if other outputs flash at the

same time as the tune is being played.

0 - No outputs

1 - Output 0 flashes on and off

2 - Output 4 flashes on and off

3 - Output 0 and 4 flash alternately

Function:

Play an internal tune on the PICAXE-08M (i/o pin2).

Description:

The PICAXE-08M can play musical tones. The PICAXE-08M is supplied with 4

pre-programmed internal tunes, which can be output via the play command. As

these tunes are included within the PICAXE-08M bootstrap code, they use very

little program memory. To generate your own tunes use the ‘tune’ command,

although this requires a much greater amount of program mmeory.

See the Tune command for suitable piezo / speaker circuits.

Affect of increased clock speed:

The tempo (speed) of the tune is doubled at 8MHz!

Example:

play 3,1 ‘ rudolf red nosed reindeer with output 0 flashingpoke

		
���

		
		
		
		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

54

54

www.picaxe.co.uk

poke

Syntax:

POKE location,data
- Location is a variable/constant specifying a register address. Valid values are 0

to 255.

- Data is a variable/constant which provides the data byte to be written.

Function:

Write data into FSR location. This allows use of registers not defined by b0-b13.

Information:

The function of the poke/peek commands is two fold.

The most commonly used function is to store temporary byte data in the

microcontrollers spare ‘storage variable’ memory. This allows the general purpose

variables (b0 to b13) to be re-used in calculations. Remember that to save a word

variable two separate poke/peek commands will be required - one for each of the

two bytes that form the word.

Addresses $50 to $7F are general purpose registers that can be used freely.

Addresses $C0 to $EF can also be used by PICAXE-18X.

Addresses $C0 to $FF can also be used by PICAXE-28X, 40X.

The second function of the poke command is for experinced users to write values

to the internal microcontroller SFR (special function regsisters).

Addresses $00 to $1F and $80 to $9F are special function registers (e.g. PORTB)

which determine how the microcontroller operates. Avoid using these addresses

unless you know what you are doing! The command uses the microcontroller FSR

register which can address register banks 0 and 1 only.

Addresses $20 to $4F and $A0 to $BF are general purpose registers reserved for

use with the PICAXE bootstrap interpreter. Poking these registers will produce

unexpected results and could cause the interpreter to crash.

Example:

poke 80,b1 ‘ save value of b1 in register 80

		
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

55

55

www.picaxe.co.uk

pulsin

Syntax:

PULSIN pin,state,variable
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

- State is a variable/constant (0 or 1) which specifies which edge must occur

before beginning the measurement in 10us units (4MHz resonator).

- Variable receives the result (1-65535). If timeout occurs (0.65536s) the result

will be 0.

Function:

Measure the length of an input pulse.

Information:

The pulsin command measures the length of a pulse. In no pulse occurs in the

timeout period, the result will be 0. If state = 1 then a low to high transistion

starts the timing, if state = 0 a high to low transistion starts the timing.

Use the count command to count the number of pulses with a specified time

period.

It is normal to use a word variable with this command.

Affect of Increased Clock Speed:

4MHz 10us unit 0.65536s timeout

8MHz 5us unit 0.32768s timeout

16MHz 2.5us unit 0.16384s timeout

Example:

pulsin 3,1,w1 ‘ record the length of a pulse on pin 3 into b1

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

56

56

www.picaxe.co.uk

pulsout

Syntax:

PULSOUT pin,time
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

- Time is a variable/constant which specifies the period (0-65535) in 10us units

(4MHz resonator).

Function:

Output a timed pulse by inverting a pin for some time.

Information:

The pulsout command generates a pulse of length time. If the output is initially

low, the pulse will be high, and vice versa. This command automatically

configures the pin as an output, but for reliable operation on 8 pin PICAXe you

should ensure this pin is an output before using the command.

Affect of Increased Clock Speed:

4MHz 10us unit

8MHz 5us unit

16MHz 2.5us unit

Example:

loop:

pulsout 4,150 ‘ send a 1.50ms pulse out of pin 4

pause 20 ‘ pause 20 ms

goto loop ‘ loop back to start

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

57

57

www.picaxe.co.uk

pwm

Syntax:

PWM pin,duty,cycles
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

- Duty is a variable/constant (0-255) which specifies analog level.

- Cycles is a variable/constant (0-255) which specifies number of cycles. Each

cycle takes about 5ms.

Function:

Output pwm then return pin to input.

Information:

This command is rarely used. For pwm control of motors etc. the pwmout

command is recommended instead.

This pwm command is used to provide ‘bursts’ of PWM output to generate a

pseudo analogue output on the PICAXE-08. This is achieved with a resistor

connected to a capacitor connected to ground; the resistor-capacitor junction

being the analog output. PWM should be executed periodically to update/refresh

the analog voltage.

Example:

loop:

pwm 4,150,20 ‘ send 20 pwm bursts out of pin 4

pause 20 ‘ pause 20 ms

goto loop ‘ loop back to start

��
���

		
		
		
		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

58

58

www.picaxe.co.uk

pwmout

Syntax:

PWMOUT pin,period,duty cycles
- Pin is a variable/constant which specifies the i/o pin to use.

(only 3 on 18X, only 2 on 08M, 1 or 2 is available on 28X/40X)

- Period is a variable/constant (0-255) which sets the PWM period

(period is the length of 1 on/off cycle i.e. the total mark:space time).

- Duty is a variable/constant (0-1023) which sets the PWM duty cycle.

(duty cycle is the mark or ‘on time’)

Function:

Generate a continuous pwm output using the microcontroller’s internal pwm

module

Information:

This command is different to most other BASIC commands in that the pwmout

runs continuously (in the background) until another pwmout command is sent.

Therefore it can be used, for instance, to continuously drive a motor at varying

speeds. To stop pwmout send a command with period = 0.

The PWM period = (period + 1) x 4 x resonator speed

(resonator speed for 4MHz = 1/4000000)

The PWM duty cycle = (duty) x resonator speed

Note that the period and duty values are linked by the above equations. If you wish to

maintain a 50:50 mark-space ratio whilst increasing the period, you must also increase

the duty cycle value appropriately. A change in resonator will change the formula.

NB: If you wish to know the frequency, PWM frequency = 1 / (the PWM period)

As the command uses the internal pwm module of the microcontroller there are

certain restrictions to it’s use:

1) The command only works on certain pins (28X/40X -1&2, 18X - 3, 08M -2).

2) Duty cycle is a 10 bit value (0 to 1023). The maximum duty cycle value must

not be set greater than 4x the period, as the mark ‘on time’ would then be

longer than the total PWM period (see equations above)! Setting above this

value will cause erratic behaviour.

3) The pwm module uses a single timer for both pins on 28X/40X. Therefore

when using PWMOUT on both pins the period will be the same for both pins.

4) The servo command cannot be used at the same time as the pwmout

command as they both use the same timer.

5) pwmout stops during nap, sleep, or after an end command

Example:

loop:

pwmout 2,150,100 ‘ set pwm

pause 1000 ‘ pause 1 s

goto loop ‘ loop back to start

		
���

		
		

���
		

���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

59

59

www.picaxe.co.uk

random

Syntax:

RANDOM wordvariable
- Variable is both the workspace and the result. As random generates a pseudo-

random sequence it is advised to repeatedly call it within a loop. A word

variable must be used.

Function:

Generate next pseudo-random number in a variable.

Description:

The random command generates a pseudo-random sequence of numbers

between 0 and 65335. All microcontrollers must perform mathematics to

generate random numbers, and so the sequence can never be truly random. On

computers a changing quantity (such as the date/time) is used as the start of the

calculation, so that each random command is different. The PICAXE does not

contain such date functionality, and so the sequence it generates will always be

identical unless the value of the word variable is set to a different value before the

random command is used.

The most common way to overcome this issue is to repeadedly call the random

command within a loop, e.g. whilst waiting for a switch push. As the number of

loops will vary between switch pushes, the output is much more random.

If you only require a byte variable (0-255), still use the word variable (e.g. w0) in

the command. As w0 is made up of b0 and b1, you can use either of these two

bytes as your desired byte variable.

Example:

loop:

random w0 ‘ put random value into w0

if pin1 =1 then doit

goto loop

doit:

let pins = b1 ‘ put random byte value on output pins

pause 100 ‘ wait 0.1s

goto loop ‘ loop back to start

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

60

60

www.picaxe.co.uk

readadc

Syntax:

READADC channel,variable
- channel is a variable/constant specifying the input pin (0-7)

- Variable receives the data byte read.

Function:

Read the ADC channel (8 bit resolution) contents into variable.

Information:

The readadc command is used to read the analogue value from the

microcontroller input pins. Note that not all inputs have internal ADC

functionality - check the table below for the PICAXE chip you are using.

On microcontrollers with ‘shared’ inputs the ADC pin is also a digital input pin.

On microcontrollers with ‘separate’ inputs the ADC pins are separate pins.

The resolution of ADC is also shown in the table. The readadc command is used

to read all types. However with 10 bit ADC types the reading will be rounded to a

byte value 8 bits. Use the readadc10 command to read the full 10 bit value.

Low-resolution ADC inputs are based upon the microcontrollers internal 16 step

comparator rather than the conventional internal ADC module.

An8-bit resolution analogue input will provide 256 different analogue readings (0 to

255) over the full voltage range (e.g. 0 to 5V). A low-resolution analogue input will

provide 16 readings over the lower two-thirds of the voltage range (e.g. 0 to 3.3V). No

readings are available in the upper third of the voltage range.

Quantity Type Pin Numbers

PICAXE-08 1 - low shared 1

PICAXE-08M 3 - 10 bit shared 1,2,4

PICAXE-18 3 - low shared 0,1,2

PICAXE-18A 3 - 8 bit shared 0,1,2

PICAXE-18X 3 - 10 bit shared 0,1,2

PICAXE-28A 4 - 8 bit separate 0,1,2,3

PICAXE-28X 4 - 10 bit separate 0,1,2,3

PICAXE-40X 7 - 10 bit separate 0,1,2,3,5,6,7

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

61

61

www.picaxe.co.uk

To ensure consistency between standard and low-resolution analogue input readings, the

low-resolution reading on PICAXE-08 and 18 will ‘jump’ in 16 discrete steps between the

nearest standard 8-bit readings, according to the table below.

Standard 8 Bit Reading Low Resolution Reading
0-10 0
11-20 11
21-31 21
32-42 32
43-52 43
53-63 53
64-74 64
75-84 75
85-95 85
96-106 96
107-116 107
117-127 117
128-138 128
139-148 139
149-159 149
160-170 160

Values greater than 170 (170-255) 160

Example:

loop:

 readadc 1,b1 ‘ read value into b1

 if b1 > 50 then flsh ‘ jump to flsh if b1 > 50

 goto loop ‘ else loop back to start

flsh:

high 1 ‘ switch on output 1

pause 5000 ‘ wait 5 seconds

low 1 ‘ switch off output 1

goto loop ‘ loop back to start

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

62

62

www.picaxe.co.uk

readadc10

Syntax:

READADC10 channel,wordvariable
- channel is a variable/constant specifying the input pin (0-7)

- wordvariable receives the data word read.

Function:

Read the ADC channel (10 bit resolution) contents into wordvariable.

Information:

The readadc10 command is used to read the analogue value from

microcontrollers with 10-bit capability. Note that not all inputs have internal

ADC functionality - check the table under ‘readadc’ command for the PICAXE

chip you are using.

As the result is 10 bit a word variable must be used - for a byte value use the

readadc command instead.

When using the debug command to output 10 bit numbers, the electrical

connection to the computer via the download cable may slightly affect the ADC

values. In this case it is recommened that the ‘enhanced’ interface circuit is used.

The Schottky diode within this circuit reduces this affect.

Example:

loop:

 readadc 1,w1 ‘ read value into b1

 debug w1 ‘ transmit to computer

 pause 200 ‘ short delay

 goto loop ‘ loop back to start

1 � 4

=
=

=
=

= ,���-	

�%����(�
�%���%�
�����

4��

�!�+ �+% &

4>�

��*>�

		
���

		
		

���
		

���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

63

63

www.picaxe.co.uk

readi2c

Syntax:

READI2C location,(variable,...)
- Location is a variable/constant specifying a byte or word address.

- Variable(s) receives the data byte(s) read.

Function:

Read i2c location contents into variable(s).

Information:

Use of i2c parts is covered in more detail in the separate ‘i2c Tutorial’ datasheet.

This command is used to read byte data from an i2c device. Location defines the

start address of the data read, although it is also possible to read more than one

byte sequentially (if the i2c device supports sequential reads).

Location must be a byte or word as defined within the i2cslave command. An

i2cslave command must have been issued before this command is used.

If the i2c hardware is incorrectly configured, or the wrong i2cslave data has been

used, the value 255 ($FF) will be loaded into each variable.

Example:

; Example of how to use DS1307 Time Clock

; Note the data is sent/received in BCD format.

' set DS1307 slave address

i2cslave %11010000, i2cslow, i2cbyte

' read time and date and debug display

main:

readi2c 0,(b0,b1,b2,b3,b4,b5,b6,b7)

debug b1

pause 2000

goto main

		
		
		
		

���
		

���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

64

64

www.picaxe.co.uk

read

Syntax:

READ location,variable
- Location is a variable/constant specifying a byte-wise address (0-255).

- Variable receives the data byte read.

Function:

Read eeprom data memroy byte content into variable.

Information:

The read command allows byte data to be read from the microcontrollers data

memory. The contents of this memory is not lost when the power is removed.

However the data is updated (with the EEPROM command specified data) upon

a new download. To save the data during a program use the write command.

The read command is byte wide, so to read a word variable two separate byte read

commands will be required, one for each of the two bytes that makes the word

(e.g. for w0, read both b0 and b1).

With the PICAXE-08, 08M and 18 the data memory is shared with program

memory. Therefore only unused bytes may be used within a program. To establish

the length of the program use ‘Check Syntax’ from the PICAXE menu. This will

report the length of program. Available data addresses can then be used as

follows:

PICAXE-08 0 to (127 - number of used bytes)

PICAXE-08M 0 to (255 - number of used bytes)

PICAXE-18 0 to (127 - number of used bytes)

With the following microcontrollers the data memory is completely separate

from the program and so no conflicts arise. The number of bytes available varies

depending on microcontroller type as follows.

PICAXE-28, 28A 0 to 63

PICAXE-28X, 40X 0 to 127

PICAXE-18A, 18X 0 to 255

Example:

loop:

for b0 = 0 to 63 ‘ start a loop

read b0,b1 ‘ read value into b1

serout 7,T2400,(b1) ‘ transmit value to serial LCD

next b0 ‘ next loop

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

65

65

www.picaxe.co.uk

readmem

Syntax:

READMEM location,data
- Location is a variable/constant specifying a byte-wise address (0-255).

- Data is a variable into which the data is read.

Function:

Read FLASH program memory byte data into variable.

Information:

The data memory on the PICAXE-28A is limited to only 64 bytes. Therefore the

readmem command provides an additional 256 bytes storage in a second data

memory area. This second data area is not reset during a download.

This command is not available on the PICAXE-28X as a larger i2c external

EEPROM can be used.

The readmem command is byte wide, so to read a word variable two separate byte

read commands will be required, one for each of the two bytes that makes the

word (e.g. for w0, read both b0 and b1).

Example:

loop: for b0 = 0 to 255 ‘ start a loop

readmem b0,b1 ‘ read value into b1

serout 7,T2400,(b1) ‘ transmit value to serial LCD

next b0 ‘ next loop

		
		
		
		
		

���
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

66

66

www.picaxe.co.uk

readtemp

Syntax:

READTEMP pin,variable
- Pin in the input pin.

- Variable receives the data byte read.

Function:

Read temperature from a DS18B20 digital temperature sensor and store in

variable. The conversion takes up to 750ms.

Information:

The temperature is read back in whole degree steps, and the sensor operates from

-55 to + 125 degrees celsius. Note that bit 7 is 0 for positive temperature values

and 1 for negative values (ie negative values will appear as 128 + numeric value).

Note the readtemp command does not work with the older DS1820 or DS18S20

as they have a different internal resolution.

Affect of increased clock speed:

This command only functions at 4MHz.

Example:

loop:

readtemp 1,b1 ‘ read value into b1

if b1 > 127 then neg ‘ test for negative

serout 7,N2400,(#b1) ‘ transmit value to serial LCD

goto loop

neg:

let b1 = b1 - 128 ‘ adjust neg value

serout 7,N2400,(“-”) ‘ transmit negative symbol

serout 7,N2400,(#b1) ‘ transmit value to serial LCD

goto loop

��4>���

��

��

,
��
�
-
	

� �� ���(�
�#��

��

�

��

%��(�
�%�

�

"���
��

������#������ ���!���"#
�� ��� �$%�� "�&%�'����(���
"�&��� #%#��������' �%��(�
�%�)�*'%#��(#��! �� ��+ "
���(# ��' �� ��)�# �#��)

		
���

		
���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

67

67

www.picaxe.co.uk

readtemp12

Syntax:

READTEMP12 pin,wordvariable
- Pin in the input pin.

- Variable receives the raw 12 bit data read.

Function:

Read 12 bit temperature data from a DS18B20 digital temperature sensor and

store in variable. The conversion takes up to 750ms.

Information:

This command is for advanced users only. For standard ‘whole degree’ data use

the readtemp command.

The temperature is read back as the raw 12 bit data into a word variable (0.125

degree resolution). The user must interpret the data through mathematical

manipulation. See the DS18B20 datasheet (www.dalsemi.com) for more

information on the 12 bit Temperature/Data relationship.

See the readtemp command for a suitable circuit.

Note the readtemp12 command does not work with the older DS1820 or

DS18S20 as they have a different internal resolution.

Affect of increased clock speed:

This command only functions at 4MHz.

Example:

loop:

readtemp12 1,w1 ‘ read value into b1

debug w1 ‘ transmit to computer screen

goto loop

		
���

		
		

���
		

���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

68

68

www.picaxe.co.uk

readowclk

Syntax:

readowclk pin
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:

Read seconds from a DS2415 clock chip.

Information:

This command only applies to the PICAXE-18A. It is now rarely used as most

users prefer to use the more powerful DS1307 i2c part interfaced to a PICAXE-

18X microcontroller.

The DS2415 is an accurate ‘second counter’. Every second, the 32 bit (4 byte)

counter is incremented. Time is very accurate due to the use of a watch crystal.

Therefore by counting elapsed seconds you can work out the accurate elapsed

time. The 32 bit register is enough to hold 136 years worth of seconds. If desired

the DS2415 can be powered by a separate 3V cell and so continue working when

the main PICAXE power is removed.

Note that after first powering the DS2415 you must use a resetowclk command to

activate the clock crystal and reset the counter. See the circuit diagram under the

resetowclk command description.

The readowclk command reads the 32 bit counter and then puts the 32 bit value

in variables b10 (LSB) to b13 (MSB) (also known as w6 and w7).

Using byte variables:

The number in b10 is the number of single seconds

The number in b11 is the number x 256 seconds

The number in b12 is the number x 65536 seconds

The number in b13 is the number x 16777216 seconds

Using word variables:

The number in w6 is the number of single seconds

The number in w7 is the number x 65536 seconds

Affect of Increased Clock Speed:

This command will only function at 4MHz.

Example:

main:

resetowclk 2 ' reset the clock on pin2

loop:

readowclk 2 ' read clock on input2

debug b1 ' display the elapsed time

pause 10000 ' wait 10 seconds

goto loop

		
		
		

���
		
		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

69

69

www.picaxe.co.uk

resetowclk

Syntax:

resetowclk pin
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:

Reset seconds count to 0 on a DS2415 clock chip.

Information:

This command resets the time on a DS2415 one wire clock chip. It also switches

the clock crystal on, and so must be used when the chip is first powered up to

enable the time counting.

Affect of Increased Clock Speed:

This command will only function at 4MHz.

See the example under the readowclk command.

��

��

������
4�

��

4�&%�

-4

-�

������#������ ���!���"#
�� ��� �$%�� "�&%�'��(���
"�&��� #%#���#�����' �%��(�
�%�)�*'%#��(#��! �� ��+ "
���(# ��' ��� �&%� �" +%�
�%� ��'%#)

��

�

��

%��(�

,
��
�
-
	

,%��
�9�!��:�����!
���� �� "�����' �������
,���-	�#(���������
����� �1��!���(��� ��
9�%� ���%���%� "�&' �
,���-	���& ��� ��+ ":

�!��

�""

���#�����(#��!
1�)�8>�?@�&���'
0(���@����#����&%�'
8�3�9����4�:����"
�����%����)

1

4

�

�

8

4���3

		
		
		

���
		
		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

70

70

www.picaxe.co.uk

readowsn

Syntax:

readowsn pin
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:

Read serial number from any Dallas 1-wire device.

Information:

This command (read-one-wire-serial-number) reads the unique serial number

from any Dallas 1-wire device (e.g DS18B20 digital temp sensor, DS2415 clock,

or DS1990A iButton).

If using an iButton device (e.g. DS1990A) this serial number is laser engraved on

the casing of the iButton.

The readowsn command reads the serial number and then puts the family code in

b6, the serial number in b7 to b12, and the checksum in b13

Note that you should not use variables b6 to b13 for other purposes in your

program during a readowsn command.

����<
� ���&
<� �

!�(

�	
�

�	
�
�

4�
&
%� ��

��

��

%�(����
5 � ������#������ ���!���"#

�� ��� �$%�� "�&%�'��(���
"�&��� #%#���#�����' �%��(�
�%�)�*'%#��(#��! �� ��+ "
���(# ��' ��� �&%� �" +%�
�%� ��'%#)

��

�

��

%��(�

,
��
�
-
	

*' �� �"�&#��9� �"���
&%� �# �%����(�! �:
������"�&%���� �"��'
�%����(�! ��$�������
�����#�4�&%� �" +%� ��%�
����4AA���%�(������ �)

		
���

		
���
���
���
���
���

Part RSA002 - iButton Contact probe

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

71

71

www.picaxe.co.uk

Example:

main:

let b6 = 0 ' reset family code to 0

' loop here reading numbers until the

' family code (b6) is no longer 0

loop:

readowsn 2 ' read serial number on input2

if b6 = 0 then loop

' Do a simple safety check here.

' b12 serial no value will not likely be FF

' if this value is FF, it means that the device

' was removed before a full read was completed

' or a short circuit occured

if b12 = $FF then main

'Everything is ok so continue

debug b1 ' ok so display

pause 1000 ' short delay

goto main

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

72

72

www.picaxe.co.uk

return

Syntax:

RETURN

Function:

Return from subroutine.

Information:

The return command is only used with a matching ‘gosub’ command, to return

program flow back to the main program at the end of the sub procedure. If a

return command is used without a matching ‘gosub’ beforehand, the program

flow will crash.

Example:

loop:

let b2 = 15 ‘ set b2 value

pause 2000 ‘ wait for 2 seconds

gosub flsh ‘ call sub-procedure

let b2 = 5 ‘ set b2 value

pause 2000 ‘ wait for 2 seconds

gosub flsh ‘ call sub-procedure

end ‘ stop accidentally falling into sub

flsh:

for b0 = 1 to b2 ‘ define loop for b2 times

 high 1 ‘ switch on output 1

 pause 500 ‘ wait 0.5 seconds

 low 1 ‘ switch off output 1

 pause 500 ‘ wait 0.5 seconds

next b0 ‘ end of loop

return ‘ return from sub-procedure

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

73

73

www.picaxe.co.uk

reverse

Syntax:

REVERSE pin
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:

Make pin an output if now input and vice versa.

Information:

This command is only required on microcontrollers with programmable input/

output pins (e.g. PICAXE-08M). This command can be used to change a pin that

has been configured as an input to an output.

All pins are connfigured as inputs on first power-up (apart from out0 on the

PICAXE-08, which is always an output). Note that pin3 is always an input.

Example:

loop:

input 1 ‘ make pin input

reverse 1 ‘ make pin output

reverse 1 ‘ make pin input

output 1 ‘ make pin output

��
���

		
		
		
		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

74

74

www.picaxe.co.uk

serin

Syntax:

SERIN pin,baudmode,(qualifier,qualifier...)
SERIN pin,baudmode,(qualifier,qualifier...),{#}variable,{#}variable...
SERIN pin,baudmode,{#}variable,{#}variable...
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

- Baudmode is a variable/constant (0-7) which specifies the mode:

T2400 true input (all baud rates at 4MHz)

T1200 true input

T600 true input

T300/T4800 true input

N2400 inverted input

N1200 inverted input

N600 inverted input

N300/N4800 inverted input

- Qualifiers are optional variables/constants (0-255) which must be received in

exact order before subsequent bytes can be received and stored in variables.

- Variable(s) receive the result(s) (0-255). Optional #’s are for inputting ascii

decimal numbers into variables, rather than raw characters.

Function:

Serial input with optional qualifiers (8 data, no parity, 1 stop).

Information:

The serin command is used to receive serial data into an input pin of the

microcontroller. It cannot be used with the serial download input pin, which is

reserved for program downloads only.

Pin specifies the input pin to be used. Baud mode specifies the baud rate and

polarity of the signal. When using simple resistor interface, use N (inverted)

signals. When using a MAX232 type interface use T (true) signals. The protocol is

fixed at N,8,1 (no parity, 8 data bits, 1 stop bit).

Note that the 4800 baud rate is only available on the X parts. Note that the

microcontroller may not be able to keep up with complicated datagrams at this

speed - a maximum of 2400 is recommended when a 4 MHz resonator is used.

Qualifiers are used to specify a ‘marker’ byte or sequence. The command

serin 1,N2400,(“ABC”),b1

requires to receive the string “ABC” before the next byte read is put into byte b1

Without qualifiers

serin 1,N2400,b1

the first byte received will be put into b1 regardless.

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

75

75

www.picaxe.co.uk

All processing stops until the new serial data byte is received. This command

cannot be interrupted by the setint command. The following example simply

waits until the sequence “go” is received.

serin 1,N2400,(“go”)

After using this command you may have to perform a ‘hard reset’ to download a

new program to the microcontroller. See the Serial Download scetion for more

details.

Affect of Increased Clock Speed:

Increasing the clock speed increases the serial baud rate as shown below. However

due to the sensitive nature of serial communications it is recommened that only a

4MHz resonator is used.

Baudmode 4MHz 8MHz 16MHz
300 300 600 1200

600 600 1200 2400

1200 1200 2400 4800

2400 2400 4800 9600

4800 4800 9600 19200

A maximum of 4800 is recommended for complicated serial transactions.

Internal resonators are not as accurate as external resonators, so in high accuracy

applications an external resonator device is recommended. However

microcontrollers with an internal resonator may be used successfully in most

applications, and may also be calibrated using the calibfreq command if required.

Example Computer Interface Circuit:

PICAXE-08/08M ONLY - Due to the internal structure of input3 (leg 4) of the

PICAXE-08, a 1N4148 diode is required betwen the pin and V+ for serin to work

on this particular pin (‘bar’ end of diode to V+) with this circuit. All other pins

have an internal diode.

Example:

loop: for b0 = 0 to 63 ‘ start a loop

serin 6,N2400,b1 ‘ receive serial value

write b0,b1 ‘ write value into b1

next b0 ‘ next loop

��

4��

���
���(��,%�

4>�2
7(��(��,%�

����(� �����9�%���:

����(� ��*-�9�%��1:

����(� ��2-�9�%���:

*�
����(� � *��,���-	

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

76

76

www.picaxe.co.uk

serout

Syntax:

SEROUT pin,baudmode,({#}data,{#}data...)
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

- Baudmode is a variable/constant (0-7) which specifies the mode:

T2400 true output always driven

T1200 true output always driven

T600 true output always driven

T300/T4800 true output always driven

N2400 inverted output always driven

N1200 inverted output always driven

N600 inverted output always driven

N300/N4800 inverted output always driven

(4800 is only available on X parts)

- Data are variables/constants (0-255) which provide the data to be output.

Optional #’s are for outputting ascii decimal numbers, rather than raw

characters. Text can be enclosed in speech marks (“Hello”)

Function:

Transmit serial data output (8 data bits, no parity, 1 stop bit).

Information:

The serout command is used to transmit serial data from an output pin of the

microcontroller. It cannot be used with the serial download output pin - use the

sertxd command in this case.

Pin specifies the output pin to be used. Baud mode specifies the baud rate and

polarity of the signal. When using simple resistor interface, use N (inverted)

signals. When using a MAX232 type interface use T (true) signals. The protocol is

fixed at N,8,1 (no parity, 8 data bits, 1 stop bit).

Note that the 4800 baud rate is only available on the X parts. Note that the

microcontroller may not be able to keep up with complicated datagrams at this

speed - a maximum of 2400 is recommended when a 4 MHz resonator is used.

The # symbol allows ascii output. Therefore #b1, when b1 contains the data 126,

will output the ascii characters “1” ”2” ”6” rather than the raw data 126.

Please also see the interfacing circuits , affect of resonator clock speed, and

explanation notes of the ‘serin’ command, as all of these notes also apply to the

serout command.

Example:

loop:

for b0 = 0 to 63 ‘ start a loop

read b0,b1 ‘ read value into b1

serout 7,N2400,(b1) ‘ transmit value to serial LCD

next b0 ‘ next loop

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

77

77

www.picaxe.co.uk

sertxd

Syntax:

SERTXD ({#}data,{#}data...)

- Data are variables/constants (0-255) which provide the data to be output.

Function:

Serial output via the serout programming pin (baud 4800, 8 data, no parity, 1

stop).

Information:

The sertxd command is similar to the serout command, but acts via the serial

output pin rather than a general output pin. This allows data to be sent back to

the computer via the programming cable. This can be useful whilst debugging

data - view the uploaded data in the PICAXE>Terminal window. There is an

option within View>Options>Options to automatically open the Terminal

windows after a download.

The baud rate is fixed at 4800,n,8,1

Affect of Increased Clock Speed:

Increasing the clock speed increases the serial baud rate as shown below.

4MHz 8MHz 16MHz
4800 9600 19200

Example:

loop:

for b1 = 0 to 63 ‘ start a loop

sertxd(“The value of b1 is ”,#b1,13,10)

pause 1000

next b1 ‘ next loop

		
���

		
		

���
		

���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

78

78

www.picaxe.co.uk

servo

Syntax:

SERVO pin,pulse
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

- Pulse is variable/constant (75-225) which specifies the servo position

Function:

Pulse an output pin continuously to drive a radio-control style servo

Information:

Servos, as commonly found in radio control toys, are a very accurate motor/

gearbox assembly that can be repeatedly moved to the same position due to their

internal position sensor. Generally servos require a pulse of 0.75 to 2.25ms every

20ms, and this pulse must be constantly repeated every 20ms. Once the pulse is

lost the servo will loose it’s position.

The servo command starts a pin pulsing high for length of time pulse (x0.01 ms)

every 20ms. This command is different to all other BASIC commands in that the

pulsing mode continues until another servo, high or low command is executed.

High and low commands stop the pulsing immediately. Servo commands adjust

the pulse length to the new pulse value, hence moving the servo. Servo cannot be

used at the same time as pwmout as they share a common timer.

Do not use a pulse value less than 75 or

greater than 225, as this may cause the

servo to malfunction. Due to tolerances in

servo manufacture all values are

approximate and will require fine-tuning

by experimentation.

Always use a separate 6V (e.g 4x AA cells) power supply for the servo, as

they generate a lot of electrical noise.

Note that the overhead processing time required for processing the servo

commands every 20ms causes the other commands to be slightly extended i.e. a

pause command will take slightly longer than expected. The servo pulses are also

temporarily disabled during timing sensitive serin, serout, sertxd and debug

commands.

Affect of increased clock speed:

The servo command will only function correctly at 4MHz.

Example:

loop: servo 4,75 ‘ move servo to one end

pause 2000 ‘ wait 2 seconds

servo 4,150 ‘ move servo to centre

pause 2000 ‘ wait 2 seconds

servo 4,225 ‘ move servo to other end

pause 2000 ‘ wait 2 seconds

goto loop ‘ loop back to start

		
���

		
���
���
���
���
���

,%�
11�2

B

2

�

�	2�7

8���C,,�6

��

8� ��

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

79

79

www.picaxe.co.uk

setint

Syntax:

SETINT input,mask
- input is a variable/constant (0-255) which specifies inputs condition.

- mask is variable/constant (0-255) which specifies the mask

Function:

Interrupt on a certain inputs condition.

Information:

The setint command causes a polled interrupt on a certain input pin condition.

A polled interrupt is a quicker way of reacting to a particular input combination.

It is the only type of interrupt available in the PICAXE system. The inputs port is

checked between execution of each command line in the program, betwen each

note of a tune command, and continuously during any pause command. If the

particular inputs condition is true, a ‘gosub’ to the interrupt sub-procedure is

executed immediately. When the sub-procedure has been carried out, program

execution continues from the main program.

The interrupt inputs condition is any pattern of ‘0’s and ‘1’s on the input port,

masked by the byte ‘mask’. Therefore any bits masked by a ‘0’ in byte mask will be

ignored.

e.g.

to interrupt on input1 high only

setint %00000010,%00000010

to interrupt on input1 low only

setint %00000000,%00000010

to interrupt on input0 high, input1 high and input 2 low

setint %00000011,%00000111

etc.

Only one input pattern is allowed at any time. To disable the interrupt execute a

SETINT command with the value 0 as the mask byte.

Notes:

1) Every program which uses the SETINT command must have a corresponding

interrupt: sub-procedure (terminated with a return command) at the bottom

of the program.

2) When the interrupt occurs, the interrupt is permanently disabled. Therefore to

re-enable the interrupt (if desired) a SETINT command must be used within

the interrupt: sub-procedure itself. The interrupt will not be enabled until the

‘return’ command is executed.

3) If the interrupt is re-enabled and the interrupt condition is not cleared within

the sub-procedure, a second interrupt may occur immediately upon the return

command.

4) After the interrupt code has executed, program execution continues at the next

program line in the main program. In the case of the interrupted pause, wait,

play or tune command, any remaining time delay is ignored and the program

continues with the next program line.

		
���

		
���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

80

80

www.picaxe.co.uk

More detailed SETINT explanation.

The SETINT must be followed by two numbers - a ‘compare with value’ (input)

and an ‘input mask’ (mask) in that order. It is normal to display these numbers in

binary format, as it makes it more clear which pins are ‘active’. In binary format

input7 is on the left and input0 is on the right.

The second number, the ‘input mask’, defines which pins are to be checked to see

if an interrupt is to be generated ...

- %00000001 will check input pin 0

- %00000010 will check input pin 1

- %01000000 will check input pin 6

- %10000000 will check input pin 7

- etc

These can also be combined to check a number of input pins at the same time...

- %00000011 will check input pins 1 and 0

- %10000100 will check input pins 7 and 2

Having decided which pins you want to use for the interrupt, the first number

(inputs value) states whether you want the interrupt to occur when those

particular inputs are on (1) or off (0).

Once a SETINT is active, the PICAXE monitors the pins you have specified in

‘input mask’ where a ‘1’ is present, ignoring the other pins.

An input mask of %10000100 will check pins 7 and 2 and create a value of

%a0000b00 where bit ‘a’ will be 1 if pin 7 is high and 0 if low, and bit ‘b’ will be

1 if pin 2 is high and 0 if low.

The ‘compare with value’, the first argument of the SETINT command, is what

this created value is compared with, and if the two match, then the interrupt will

occur, if they don’t match then the interrupt won’t occur.

If the ‘input mask’ is %10000100, pins 7 and 2, then the valid ‘compare with

value’ can be one of the following ...

- %00000000 Pin 7 = 0 and pin 2 = 0

- %00000100 Pin 7 = 0 and pin 2 = 1

- %10000000 Pin 7 = 1 and pin 2 = 0

- %10000100 Pin 7 = 1 and pin 2 = 1

So, if you want to generate an interrupt whenever Pin 7 is high and Pin 2 is low,

the ‘input mask’ is %10000100 and the ‘compare with value’ is %10000000,

giving a SETINT command of ...

- SETINT %10000000,%10000100

The interrupt will then occur when, and only when, pin 7 is high and pin 2 is low.

If pin 7 is low or pin 2 is high the interrupt will not happen as two pins are

‘looked at’ in the mask.

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

81

81

www.picaxe.co.uk

Example:

setint %10000000,%10000000

‘ activate interrupt when pin7 only goes high

loop:

low 1 ‘ switch output 1 off

pause 2000 ‘ wait 2 seconds

goto loop ‘ loop back to start

interrupt:

high 1 ‘ switch output 1 on

if pin7 = 1 then interrupt ‘ loop here until the

‘ interrupt cleared

pause 2000 ‘ wait 2 seconds

setint %10000000,%10000000 ‘ re-activate interrupt

return ‘ return from sub

In this example an LED on output 1 will light immediately the input is switched

high. With a standard if pin7 =1 then.... type statement the program could take

up to two seconds to light the LED as the if statement is not processed during the

pause 2000 delay time in the main program loop (standard program shown

below for comparison).

loop:

low 1 ‘ switch output 1 off

pause 2000 ‘ wait 2 seconds

if pin7 = 1 then sw_on

goto loop ‘ loop back to start

sw_on:

high 1 ‘ switch output 1 on

if pin7 = 1 then sw_on

‘ loop here until the condition is cleared

pause 2000 ‘ wait 2 seconds

goto loop ‘ back to main loop

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

82

82

www.picaxe.co.uk

setfreq

Syntax:

setfreq freq
- freq is the keyword m4 or m8.

Function:

Set the internal clock frequency for microcontrollers with internal resonator to

4MHz (default) or 8MHz.

Information:

The setfreq command can be used to double the speed of operation of the

microcontroller from 4MHz to 8MHz. However note that this speed increase

affects many commands, by, for instance, changing their properties (e.g. all pause

commands are half the length at 8MHz).

On devices with an external resonator this command cannot be used - the value

of the external resonator must be changed to alter the clock frequency.

The change occurs immediately. All programs default to m4 (4MHz) if a setfreq

command is not used. Note that you may have to perform a ’hard reset’ at 4MHz

if a new download fails after using this command.

The 8 and 4MHz frequencies are factory preset to the most accurate settings.

However advanced users may use the calibfreq command to adjust these factory

preset settings.

Some commands such as readtemp will only work at 4MHz. In these cases

change back to 4MHz temporarily to operate these commands.

Example:

setfreq m4 ‘ setfreq to 4MHz

readtemp 1,b1 ‘ do command at 4MHz

setfreq m8 ‘ set freq back to 8MHz

		
���

		
���
���
		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

83

83

www.picaxe.co.uk

shiftin

Information:

The PICAXE microcontrollers do not have a shiftin command. However the same

functionality found in other products can be achieved by using the sub

procedures provided below. These sub-procedures are also saved in the file called

shiftin_out.bas in the \samples folder of the Programming Editor software.

To use, simply copy the symbol definitions to the top of your program and copy

the appropriate shiftin sub procedures to the bottom of your program.

Do not copy all options as this will waste memory space.

It is presumed that the data and clock outputs (sdata and sclk) are in the low

condition before the gosub is used.

BASIC line

“shiftin serdata, sclk, mode, (var_in(\bits)) “

 becomes

gosub shiftin_LSB_Pre (for mode LSBPre)

gosub shiftin_MSB_Pre (for mode MSBPre)

gosub shiftin_LSB_Post (for mode LSBPost)

gosub shiftin_MSB_Post (for mode MSBPost) ‘

‘ ~~~~~ SYMBOL DEFINITIONS ~~~~~

‘ Required for all routines. Change pin numbers/bits as required.

‘ Uses variables b7-b13 (i.e. b7,w4,w5,w6). If only using 8 bits

‘ all the word variables can be safely changed to byte variables.

‘

‘***** Sample symbol definitions *****

symbol sclk = 5 ‘ clock (output pin)

symbol sdata = 7 ‘ data (output pin for shiftout)

symbol serdata = input7 ‘ data (input pin for shiftin, note input7

symbol counter = b7 ‘ variable used during loop

symbol mask = w4 ‘ bit masking variable

symbol var_in = w5 ‘ data variable used durig shiftin

symbol var_out = w6 ‘ data variable used during shiftout

symbol bits = 8 ‘ number of bits

symbol MSBvalue = 128 ‘ MSBvalue

‘(=128 for 8 bits, 512 for 10 bits, 2048 for 12 bits)

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

84

84

www.picaxe.co.uk

‘==

‘ ~~~~~ SHIFTIN ROUTINES ~~~~~

‘ Only one of these 4 is required - see your IC requirements

‘ It is recommended you delete the others to save space

‘==

‘ ***** Shiftin LSB first, Data Pre-Clock *****

shiftin_LSB_Pre:

let var_in = 0

for counter = 1 to bits ‘ number of bits

var_in = var_in / 2 ‘ shift right as LSB first

if serdata = 0 then skipLSBPre

var_in = var_in + MSBValue ‘ set MSB if serdata = 1

skipLSBPre: pulsout sclk,1 ‘ pulse clock to get next data bit

next counter

return

‘==

‘ ***** Shiftin MSB first, Data Pre-Clock *****

shiftin_MSB_Pre:

let var_in = 0

for counter = 1 to bits ‘ number of bits

var_in = var_in * 2 ‘ shift left as MSB first

if serdata = 0 then skipMSBPre

var_in = var_in + 1 ‘ set LSB if serdata = 1

skipMSBPre: pulsout sclk,1 ‘ pulse clock to get next data bit

next counter

return

‘==

‘ ***** Shiftin LSB first, Data Post-Clock ***** ‘

shiftin_LSB_Post: let var_in = 0

for counter = 1 to bits ‘ number of bits

var_in = var_in / 2 ‘ shift right as LSB first

pulsout sclk,1 ‘ pulse clock to get next data bit

if serdata = 0 then skipLSBPost

var_in = var_in + MSBValue ‘ set MSB if serdata = 1

skipLSBPost: next counter

return

‘==

‘ ***** Shiftin MSB first, Data Post-Clock *****

shiftin_MSB_Post: let var_in = 0

for counter = 1 to bits ‘ number of bits

var_in = var_in * 2 ‘ shift left as MSB first

pulsout sclk,1 ‘ pulse clock to get next data bit

if serdata = 0 then skipMSBPost

var_in = var_in + 1 ‘ set LSB if serdata = 1

skipMSBPost: next counter

return

‘==

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

85

85

www.picaxe.co.uk

��
���
��

���
���
���
���
���

shiftout

Information:

The PICAXE microcontrollers do not have a shiftout command. However the

same functionality found in other products can be achieved by using the sub

procedures provided below. These sub-procedures are also saved in the file called

shiftin_out.bas in the \samples folder of the Programming Editor software.

To use, simply copy the symbol definitions (listed within the shiftin command)

to the top of your program and copy the appropriate shiftout sub procedures

below to the bottom of your program.

Do not copy both options as this will waste memory space.

It is presumed that the data and clock outputs (sdata and sclk) are in the low

condition before the gosub is used.

BASIC line

“shiftout sdata, sclk, mode, (var_out(\bits))”

becomes

gosub shiftout_LSBFirst (for mode LSBFirst)

gosub shiftout_MSBFirst (for mode MSBFirst)

Note the symbol definitions listed in the ‘shiftin’ command must also be used.

‘==

‘ ***** Shiftout LSB first *****

shiftout_LSBFirst:

for counter = 1 to bits ‘ number of bits

mask = var_out & 1 ‘ mask LSB

low sdata ‘ data low

if mask = 0 then skipLSB

high sdata ‘ data high

skipLSB: pulsout sclk,1 ‘ pulse clock for 10us

var_out = var_out / 2 ‘ shift variable right for LSB

next counter

return

‘==

‘ ***** Shiftout MSB first *****

shiftout_MSBFirst:

for counter = 1 to bits ‘ number of bits

mask = var_out & MSBValue ‘ mask MSB

low sdata ‘ data low

if mask = 0 then skipMSB

high sdata ‘ data high

skipMSB: pulsout sclk,1 ‘ pulse clock for 10us

var_out = var_out * 2 ‘ shift variable left for MSB

next counter

return

‘==

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

86

86

www.picaxe.co.uk

sleep

Syntax:

SLEEP period
- Period is a variable/constant which specifies the duration of sleep in multiples

of 2.3 seconds (0-65535).

Function:

Sleep for some period (multiples of 2.3s).

Information:

The sleep command puts the microcontroller into low power mode for a period

of time. When in low power mode all timers are switched off and so the pwmout

and servo commands will cease to function. The nominal period is 2.3s, so sleep

10 will be approximately 23 seconds. The sleep command is not regulated and so

due to tolerances in the microcontrollers internal timers, this time is subject to -

50 to +100% tolerance. The external temperature affects these tolerances and so

no design that requires an accurate time base should use this command.

Shorter ‘sleeps’ are possible with the ‘nap’ command.

Affect of increased clock speed:

The sleep command uses the internal watchdog timer which is not affected by

changes in resonator clock speed.

Example:

loop: high 1 ‘ switch on output 1

sleep 10 ‘ sleep for 23 seconds

low 1 ‘ switch off output 1

sleep 100 ‘ sleep for 230 seconds

goto loop ‘ loop back to start

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

87

87

www.picaxe.co.uk

sound

Syntax:

SOUND pin,(note,duration,note,duration...)
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

- Note(s) are variables/constants (0-255) which specify type and frequency.

Note 0 is silent for the duration. Notes 1-127 are ascending tones. Notes

128-255 are ascending white noises.

- Duration(s) are variables/constants (0-255) which specify duration (multiples

of approx 10ms).

Function:

Play sound ‘beep’ noises.

Information:

This command is designed to make audible ‘beeps’ for games and keypads etc. To

play music use the play or tune command instead. Note and duration must be

used in ‘pairs’ within the command.

See the tune command for suitable piezo / speaker circuits.

Affect of Increased Clock Speed:

This length of the note is halved at 8MHz and quartered at 16MHz.

Example:

loop: let b0 = b0 + 1 ‘ increment b0

sound 7,(b0,50) ‘ make a sound

goto loop ‘ loop back to start

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

88

88

www.picaxe.co.uk

stop

Syntax:

STOP

Function:

Enter a permanent stop loop until the power cycles (program re-runs) or the PC

connects for a new download.

Information:

The stop command places the microcontroller into a permament loop at the end

of a program. Unlike the end command the stop command does not put the the

microcontroller into low power mode after a program has finished.

The stop command does not switch off internal timers, and so commands such as

servo and pwmout that require these timers will continue to function.

Example:

loop:

pwmout 1,120,400

stop

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

89

89

www.picaxe.co.uk

switch on/off

Syntax:

SWITCH ON pin
SWITCHON pin
SWITCH OFF pin
SWITCHOFF pin
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:

Make pin output high / low.

Information:

This is a ‘pseudo’ command designed for use by younger students It is actually

equivalent to ‘high’ or ‘low’, ie the software outputs a high or low command as

appropriate.

Example:

loop: switch on 7 ‘ switch on output 7

wait 5 ‘ wait 5 seconds

switch off 7 ‘ switch off output 7

wait 5 ‘ wait 5 seconds

goto loop ‘ loop back to start

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

90

90

www.picaxe.co.uk

��
���
��

���
���
���
���
���

symbol

Syntax:

SYMBOL symbolname = value
SYMBOL symbolname = value ?? constant
- Symbolname is a text string which must begin with an alpha-character or ‘_’.

After the first character, it can also contains number characters (‘0’-’9').

- Value is a variable or constant which is being given an alternate symbolname.

- ?? can be any supported mathematical function e.g. + - * / etc.

Function:

Assign a value to a new symbol name.

Mathematical operators can also be used on constants (not variables)

Information:

Symbols are used to rename constants or variables to make them easier to

remember during a program. Symbols have no affect on program length as they

are converted back into ‘numbers’ before the download.

Symbols can contain numeric characters, but must not start with a numeric

character. Naturally symbol names cannot be command names or reserved words

such as input, step, etc. See the list of reserved words at the end of this section.

When using input and output pin definitions take care to use the term ‘pin0’ not

‘0’ when describing input variables to be used within if...then statements.

Example:

symbol RED_LED = 7 ‘ define a output pin

symbol PUSH_SW = pin1 ‘ define a input switch

symbol COUNTER = B0 ‘ define a variable symbol

let COUNTER = 200 ‘ preload counter with 200

loop: high RED_LED ‘ switch on output 7

pause COUNTER ‘ wait 0.2 seconds

low RED_LED ‘ switch off output 7

pause COUNTER ‘ wait 0.2 seconds

goto LOOP ‘ loop back to start

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

91

91

www.picaxe.co.uk

toggle

Syntax:

TOGGLE pin
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:

Make pin output and toggle state.

Information:

The high command inverts an output (high if currently low and vice versa)

On microcontrollers with configurable input/output pins (e.g. PICAXE-08) this

command also automatically configures the pin as an output.

Example:

loop:

toggle 7 ‘ toggle output 7

pause 1000 ‘ wait 1 second

goto loop ‘ loop back to start

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

92

92

www.picaxe.co.uk

tune

Syntax:

TUNE LED, speed, (note, note, note...)
- LED is a variable/constant (0 -3) which specifies if other outputs flash at the

same time as the tune is being played.

0 - No outputs

1 - Output 0 flashes on and off

2 - Output 4 flashes on and off

3 - Output 0 and 4 flash alternately

- speed is a variable/constant (1-15) which specifies the tempo of the tune.

- notes are the actual tune data generated by the Tune Wizard.

Function:

Plays a user defined musical tune on the PICAXE-08M.

Information:

The tune command allows musical ‘tunes’ to be played on the PICAXE-08M.

Playing music on a microcontroller with limited memory will never have the

quality of commercial playback devices, but the tune command performs

remarkably well. Music can be played on economical piezo sounders (as found in

musical birthday cards) or on better quality speakers.

The following information gives technical details of the note encoding process.

However most users will use the ‘Tune Wizard’ to automatically generate the tune

command, by either manually sequentially entering notes or by importing a

mobile phone ring tone. Therefore the technical details are only provided for

information only – they are not required to use the Tune Wizard.

Note that the tune command compresses the data, but the longer the tune the

more memory that will be used. The ‘play’ command does not use up memory in

the same way, but is limited to the 4 internal preset tunes.

All tunes play on a piezo sounder or speaker, connected to output 2 (leg 5) of the

PICAXE-08M. Some sample circuits are shown later in this section.

		
���

		
		
		
		
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

93

93

www.picaxe.co.uk

Speed:

The speed of music is normally called ‘tempo’ and is

the number of ‘quarter beats per minute’ (BPM).

This is defined within the PICAXE system by

allocating a value of 1-15 to the speed setting.

The sound duration of a quarter beat within the

PICAXE is as follows:

sound duration = speed x 65.64 ms

Each quarter beat is also followed by a silence

duration as follows,

silence duration = speed x 8.20 ms

Therefore the total duration of a quarter beat is:

total duration = (speed x 65.64)

 + (speed x 8.20)

= speed x 73.84 ms

Therefore the approximate number of beats per

minute (bpm) are:

bpm = 60 000 / (speed x 73.84)

A table of different speed values are shown here.

This gives a good range for most popular tunes.

Note that within electronic music a note normally plays for 7/8 of the total note

time, with silence for 1/8. With the PICAXE the ratio is slightly different (8/9)

due to memory and mathematical limitations of the microcontroller.

Speed BPM

1 812

2 406

3 270

4 203

5 162

6 135

7 116

8 101

9 90

10 81

11 73

12 67

13 62

14 58

15 54

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

94

94

www.picaxe.co.uk

.

Musical note Byte.017 6 5 4 3 2

Note (0 - 12)

Octave (0 - 2)

Duration (0 - 3)

Note Bytes:

Each note byte is encoded into 8 bits as shown. The encoding is optimised to

ensure the most common values (1/4 beat and octave 6) both have a value of 00.

Note that as the PICAXE also performs further optimisation on the whole tune,

the length of the tune will not be exactly the same length as the number of note

bytes. 1/16, 1/32 and ‘dotted’ notes are not supported.

76 = Duration 54 = Octave 3210 = Note

00 = 1/4 00 = Middle Octave (6) 0000 = C

01 = 1/8 01 = High Octave (7) 0001 = C#

10 = 1 10 = Low Octave (5) 0010 = D

11 = 1/2 11 = not used 0011 = D#

0100 = E

0101 = F

0110 = F#

0111 = G

1000 = G#

1001 = A

1010 = A#

1011 = B

11xx = Pause

 C5 D5 E5 F5 G5 A5 B5

 C5# D5# F5# G5# A5#

 C6 D6 E6 F6 G6 A6 B6

 C6# D6# F6# G6# A6#

 C7 D7 E7 F7 G7 A7 B7

 C7# D7# F7# G7# A7#

Piano Representation of Note Frequency

C5 = 262 Hz

C5# = 277 Hz

D5 = 294 Hz

D5# = 311 Hz

E5 = 330 Hz

F5 = 349 Hz

F5# = 370 Hz

G5 = 392 Hz

G5# = 415 Hz

A5 = 440 Hz

A5# = 466 Hz

B5 = 494 Hz

C6 = 523 Hz ("Middle C")

C6# = 554 Hz

D6 = 587 Hz

D6# = 622 Hz

E6 = 659 Hz

F6 = 698 Hz

F6# = 740 Hz

G6 = 784 Hz

G6# = 831 Hz

A6 = 880 Hz

A6# = 932 Hz

B6 = 988 Hz

C7 = 1047 Hz

C7# = 1109 Hz

D7 = 1175 Hz

D7# = 1245 Hz

E7 = 1318 Hz

F7 = 1396 Hz

F7# = 1480 Hz

G7 = 1568 Hz

G7# = 1661 Hz

A7 = 1760 Hz

A7# = 1865 Hz

B7 = 1975 Hz

Octave 5 Octave 6 Octave 7

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

95

95

www.picaxe.co.uk

PICAXE-08M Tune Wizard

The Tune Wizard allows musical

tunes to be created for the

PICAXE-08M. Tunes can be

entered manually using the drop-

down boxes if desired, but most

users will prefer to automatically

import a mobile phone

monophonic ringtone. These

ringtones are widely available on

the internet in RTTTL format (used

on most Nokia phones). Note the

PICAXE can only play one note at

a time (monophonic), and so

cannot use multiple note

(polyphonic) ringtones.

There are approximately 1000 tunes for free download on the software page of

the www.picaxe.co.uk website. Some other possible sources for free ringtones are:

http://www.ringtonerfest.com/

http://www.free-ringtones.eu.com/

http://www.tones4free.com/

To start the Tune Wizard click the PICAXE>Wizard>Tune Wizard menu.

The easiest way to import a ringtone from the internet is to find the tune on a

web page. Highlight the RTTTL version of the ringtone in the web browser and

then click Edit>Copy. Move back to the Tune Wizard and then click Edit>Paste

Ringtone.

To import a ringtone from a saved text file, click File>Import Ringtone.

Once the tune has been generated, select whether you want outputs 0 and 4 to

flash as the tune plays (from the options within the ‘Outputs’ section).

The tune can then be tested on the computer by clicking the ‘Play’ menu (if your

computer is fitted with soundcard and speakers). The tune played will give a

rough idea of how the tune will sound on the PICAXE, but will differ slightly due

to the different ways that the computer and PICAXE generate and playback

sounds. On older computers the tune generation may take a couple of seconds as

generating the tune is very memory intensive.

Once your tune is complete click the ’Copy’ button to copy the tune command to

the Windows clipboard. The tune can then be pasted into your main program.

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

96

96

www.picaxe.co.uk

Tune Wizard menu items:

File New Start a new tune

Open Open a previously saved tune

Save As Save the current tune

Import Ringtone Open a ringtone from a text file

Export Ringtone Save tune as a ringtone text file

Export Wave Save tune as a Windows .wav sound file

Close Close the Wizard

Edit Insert Line Insert a line in the tune

Delete Line Delete the current line

Copy BASIC Copy the tune command to Windows clipboard

Copy Ringtone Copy tune as a ringtone to Windows clipboard

Paste BASIC Paste tune command into Wizard

Paste Ringtone Paste ringtone into Wizard

Play Play the current tune on the computer’s speaker

Help Help Start this help file.

Ring Tone Tips & Tricks:

1. After generating the tune, try adjusting the tempo by increasing or decreasing

the speed value by 1 and listening to which ‘speed’ sounds best.

2. If your ringtone does not import, make sure the song title at the start of the

line is less than 50 characters long and that all the text is saved on a single

line.

3. Ringtones that contain the instruction ‘d=16’ after the description, or that

contain many notes starting with 16 or 32 (the odd one or two doesn’t

matter) will not play correctly at normal speed on the PICAXE. However they

may sound better if you double the PICAXE processor speed by using a

‘setfreq m8’ command before the tune command.

4. The PICAXE import filters ‘round-down’ dotted notes (notes ending with ‘.’).

You may wish to change these notes into longer notes after importing.

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

97

97

www.picaxe.co.uk

Sound Circuits for use with the play or tune command.

The simplest, most economical, way to play the tunes is to use a piezo

sounder. These are simply connected between the output pin 2 (leg 5)

of the PICAXE-08M and 0V (see circuits below).

The best piezo sound comes from the ’plastic cased’ variants. Uncased

piezos are also often used in schools due to their low cost, but the

‘copper’ side will need fixing to a suitable sound-board (piece of card,

polystyrene cup or even the PCB itself) with double sided tape to

amplify the sound.

For richer sounds a speaker should be used. Once again the quality of

the sound-box the speaker is placed in is the most significant factor for

quality of sound. Speakers can be driven directly (using a series

capacitor) or via a simply push-pull transistor amplifier.

A 40 or 80 ohm speaker can be connected with two capacitors as shown. For an 8

ohm speaker use a combination of the speaker and a 33R resistor in series (to

generate a total resistance of 39R).

The output can also be connected (via a simple RC filter) to an audio amplifier

such as the TBA820M.

The sample .wav sound files in the \music sub-folder of the Programming Editor

software are real-life recordings of tunes played (via a speaker) from the

microcontroller chip.

,%���

��

,%���

��

�����>�
�'��#� �� �

4�(3

4�(3

,%���

��

*���("%�
����%$% �4���3 4��3

4� 4�

,% @�

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

98

98

www.picaxe.co.uk

 Ringing Tones Text Transfer Language (RTTTL) file format specification

<name> <sep> [<defaults>] <sep> <note-command>+

<name> := <char>+ ; max length 10 characters PICAXE accepts up to 50

<sep> := “:”

<defaults> :=

<def-note-duration> |<def-note-scale> |<def-beats>

<def-note-duration> := “d=” <duration>

<def-note-octave> := “o=” <octave>

<def-beats> := “b=” <beats-per-minute>

; If not specified, defaults are

; duration = 4 (quarter note)

; octave = 6

; beats-per-minute = 63 (decimal value) PICAXE defaults to 62

<note-command> :=

[<duration>] <note> [<octave>] [<special-duration>] <delimiter>

<duration> :=

”1" | ; Full 1/1 note

”2" | ; 1/2 note

”4" | ; 1/4 note

”8" | ; 1/8 note

”16" | ; 1/16 note Not used – PICAXE changes to 8

”32" | ; 1/32 note Not used – PICAXE changes to 8

<note> :=

”C” |

”C#” |

”D” |

”D#” |

”E” |

”F” |

”F#” |

”G” |

”G#” |

”A” |

”A#” |

”B” | ; “H” can also be used PICAXE exports using B

“P” ; pause

<octave> :=

”5" | ; Note A is 440Hz

”6" | ; Note A is 880Hz

”7" | ; Note A is 1.76 kHz

”8" ; Note A is 3.52 kHz Not used - PICAXE uses octave 7

<special-duration> :=

”.” ; Dotted note Not used - PICAXE rounds down

<delimiter> := “,”

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

99

99

www.picaxe.co.uk

wait

Syntax:

WAIT seconds
- Seconds is a constant (1-65) which specifies how many seconds to pause.

Function:

Pause for some time in whole seconds.

Information:

This is a ‘pseudo’ command designed for use by younger students It is actually

equivalent to ‘pause * 1000’, ie the software outputs a pause command with a

value 1000 greater than the wait value. Therefore this command cannot be used

with variables. This command is not normally used outside the classroom.

Example:

loop:

switch on 7 ‘ switch on output 7

wait 5 ‘ wait 5 seconds

switch off 7 ‘ switch off output 7

wait 5 ‘ wait 5 seconds

goto loop ‘ loop back to start

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

100

100

www.picaxe.co.uk

write

Syntax:

WRITE location,data
- Location is a variable/constant specifying a byte-wise address (0-255).

- Data is a variable/constant which provides the data byte to be written.

Function:

Write byte data content into data memory.

Information:

The write command allows byte data to be written into the microcontrollers data

memory. The contents of this memory is not lost when the power is removed.

However the data is updated (with the EEPROM command specified data) upon

a new download. To read the data during a program use the read command.

The write command is byte wide, so to write a word variable two separate byte

write commands will be required, one for each of the two bytes that makes the

word (e.g. for w0, write/read both b0 and b1).

With the PICAXE-08, 08M and 18 the data memory is shared with program

memory. Therefore only unused bytes may be used within a program. To establish

the length of the program use ‘Check Syntax’ from the PICAXE menu. This will

report the length of program. Available data addresses can then be used as

follows:

PICAXE-08 0 to (127 - number of used bytes)

PICAXE-08M 0 to (255 - number of used bytes)

PICAXE-18 0 to (127 - number of used bytes)

With the following microcontrollers the data memory is completely separate

from the program and so no conflicts arise. The number of bytes available varies

depending on microcontroller type as follows.

PICAXE-28, 28A 0 to 63

PICAXE-28X, 40X 0 to 127

PICAXE-18A, 18X 0 to 255

Example:

loop:

for b0 = 0 to 63 ‘ start a loop

serin 6,T2400,b1 ‘ receive serial value

write b0,b1 ‘ write value into b1

next b0 ‘ next loop

��
���
��

���
���
���
���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

101

101

www.picaxe.co.uk

writemem

Syntax:

WRITEMEM location,data
- Location is a variable/constant specifying a byte-wise address (0-255).

- Data is a variable/constant which provides the data byte to be written.

Function:

Write FLASH program memory byte data into location.

Information:

The data memory on the PICAXE-28A is limited to only 64 bytes. Therefore the

writemem command provides an additional 256 bytes storage in a second data

memory area. This second data area is not reset during a download.

This command is not available on the PICAXE-28X as a larger i2c external

EEPROM can be used.

The writemem command is byte wide, so to write a word variable two separate

byte write commands will be required, one for each of the two bytes that makes

the word (e.g. for w0, read both b0 and b1).

Example:

loop:

for b0 = 0 to 255 ‘ start a loop

serin 6,T2400,b1 ‘ receive serial value

writemem b0,b1 ‘ write value into b1

next b0 ‘ next loop

		
		
		
		
		

���
		
		

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

102

102

www.picaxe.co.uk

writei2c

Syntax:

WRITEI2C location,(variable,...)
- Location is a variable/constant specifying a byte or word address.

- Variable(s) contains the data byte(s) to be written.

Function:

Write i2c location contents from variable(s).

Information:

Use of i2c parts is covered in more detail in the separate ‘i2c Tutorial’ datasheet.

This command is used to write byte data to an i2c device. Location defines the

start address of the data to be written, although it is also possible to read more

than one byte sequentially (if the i2c device supports sequential reads).

Location must be a byte or word as defined within the i2cslave command. An

i2cslave command must have been issued before this command is used.

Example:

; Example of how to use DS1307 Time Clock

; Note the data is sent/received in BCD format.

; Note that seconds, mins etc are variables that need

; defining e.g. symbol seconds = b0 etc.

' set DS1307 slave address

i2cslave %11010000, i2cslow, i2cbyte

'write time and date e.g. to 11:59:00 on Thurs 25/12/03

start_clock:

let seconds = $00 ' 00 Note all BCD format

let mins = $59 ' 59 Note all BCD format

let hour = $11 ' 11 Note all BCD format

let day = $03 ' 03 Note all BCD format

let date = $25 ' 25 Note all BCD format

let month = $12 ' 12 Note all BCD format

let year = $03 ' 03 Note all BCD format

let control = %00010000 ' Enable output at 1Hz

writei2c 0,(seconds,mins,hour,day,date,month,year,control)

 end

		
		
		
		

���
		

���
���

Section 2

BASIC COMMANDS

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

103

103

www.picaxe.co.uk

Additional Reserved Keywords

In addition to the command names (see index on page 1-2), the following are

also reserved keywords within the compiler. These words may not be used as

lables or symbols within a program.

a, and, andnot

b, b0 -b13, bit0 - bit15

cls, cr

dirs, dir0 - dir7

i2cfast, i2cfast8, i2cfast16, i2cslow, i2cslow8, i2cslow16

inputa, infra, input0-input7, is

lf, keyvalue

m4, m8

n300, n600, n1200, n2400, n4800

on, off, or, ornot, outpin0 - outpin7, output0-output7

pin0 - pin7, port, pot

step

to, t300, t600, t1200, t2400, t4800

w0, w1, w2, w3, w4, w5, w6, w7

xnor, xor, xornot

Software Version

The latest version of the Programming Editor can be downloaded from the

following website:

www.picaxe.co.uk

This manual was prepared using version 4.1.0 of the software. Ensure you are

using this version or later when referencing this manual.

A very active forum for the discussion of PICAXE projects, and for technical

support, also exists at this site.

Contact Address:

Revolution Education Ltd
4 Old Dairy Business Centre, Melcombe Road, Bath, BA2 3LR

http://www.rev-ed.co.uk/

Acknowledgements:

Revolution Education would like to thank the following:

Clive Seager

Vardan Antonyan

John Bown

LTScotland

Higher Still Development Unit

UKOOA

	Introduction.
	Labels
	Comments
	Constants
	Symbols
	Variables
	backward
	branch
	button
	calibfreq
	count
	debug
	data
	eeprom
	end
	for...next
	forward
	gosub
	goto
	halt
	high
	high portc
	i2cslave
	if...then
	if...and...then
	if...or...then
	infrain
	infrain2
	infraout
	input
	keyin
	keyled
	let
	let dirs =
	let dirsc =
	let pins =
	let pinsc =
	lookdown
	lookup
	low
	low portc
	nap
	output
	pause
	peek
	play
	poke
	pulsin
	pulsout
	pwm
	pwmout
	random
	readadc
	readadc10
	readi2c
	read
	readmem
	readtemp
	 readtemp12
	readowclk
	resetowclk
	readowsn
	return
	reverse
	serin
	serout
	sertxd
	servo
	setint
	setfreq
	shiftin
	shiftout
	sleep
	sound
	stop
	switch on/off
	symbol
	toggle
	tune
	wait
	write
	writemem
	writei2c
	Additional Reserved Keywords
	Software Version
	Contact Address:
	Acknowledgements:

