WWW. picaxe.co.uk

Section 2 ll

BASIC COMMANDS |

Contents:

SecTioN 2 - Basic CoMMANDS

o N3 AT o PSSP 3
[o] SRR 4
Comments4
Constants..... .5
SYMDBOIS e e e e e e
Variables

backward

branch

PG e e e
NGN POTEC e ettt ettt 24
i2cslave

infrain2
L1 oLV PSPPI

let pins =
let pinsc = ...
lookdown

= PSP UPPTPPPR 49
(01 401U S PP UPPPPPPRR PR 50
pause 51
peek...... .. 52
play 53
810 TP O PP PP TR 54

PUISII Lo e oot e e e e e e et e e e et e e et e et et e e ettt e e e e e e 55

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 n

BASIC COMMANDS |

readadcccoeeeeeeernnnn
readadclOccceeeeeerennnn.
readi2C ..vveeeieiiiiiieeeeeeiie,
read
readmemccevveeeeerennnnn.
readtempcoovvviiiiiiinnenn.
readtemp12
readowclkccceeeeeeiinnnnn.
resetowclKceeeeeeiinnnn.
readowsnceeeeeeeeennnnnn.
TEEUMN o
reverse ..
serin ...
serout ...
sertxd....
SErvo ..
setint
SEtfreq ..ovveeeeeeeiieiieee
Shiftinoooviieeeiiiies

stop

Additional Reserved KEYWOITSccoiiiiiiiiiiiiee et 103

SOFEWAIE VEISIONiiiiiiee ettt et e e e e e e e e e et e e e e eeaaanes
Contact Address:
ACKNOWIEAGEMENTS: ...ttt ettt e e e 103

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 H

BASIC COMMANDS |

Basic CoMMANDS

Introduction.

The PICAXE manual is divided into three sections:
Section1- Getting Started
Section 2- BASIC Commands
Section 3- Microcontroller interfacing circuits

This second section provides the syntax (with detailed examples) for all the BASIC
commands supported by the PICAXE system. It is intended as a lookup reference guide
for each BASIC command supported by the PICAXE system. As some commands only
apply to certain size PICAXE chips, a diagram beside each command indicates the sizes
of PICAXE that the command applies to.

When using the flowchart method of programming, only a small sub-set of the available
commands are supported by the on-screen simulation. These commands are indicated by
the corresponding flowchart icon by the description.

For more general information about how to use the PICAXE system, please see section 1
‘Getting Started.

The software used for programming the PICAXE is called the ‘Programming Editor’ This
software is free to download from www.picaxe.co.uk. Please see section 1 of the manual
(‘Getting Started’) for installation details and tutorials. This manual was prepared using
Version 4.1.0 of the Programming Editor software.

The latest version of this document is available on the PICAXE website at
www.picaxe.co.uk

If you have a question about any command please post a question on the very active
support forum at this website.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 II

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

Labels

Labels are used as markers throughout the program. Labels are used to mark a
position in the program to ‘jump to’ at a later point using a goto, gosub or other
command. Labels can be any word (that is not already a reserved keyword) and
may contain digits and the underscore character. Labels must start with a letter
(not digit), and are defined with a colon (:) at the marker position. The colon is
not required within the actual commands.

The compiler is not case sensitive (lower and/or upper case may be used at any
time).

Example:
| oop:
high 1 ‘ switch on output 1
pause 5000 ‘ wait 5 seconds
low 1 ‘ switch off output 1
pause 5000 ‘ wait 5 seconds
goto | oop ‘ loop back to start
Whitespace

Whitespace is the term used by programmers to define the white area on a
printout of the program. This involves spaces, tabs and empty lines. Any of these
features can be used to space the program to make it clearer and easier to read.

It is convention to only place labels on the left hand side of the screen. All other
commands should be indented by using the ‘tab key’ This convention makes the
program much easier to read and follow.

Comments

Comments are used to add information into the program for future reference.
They are completely ignored by the computer during a download. Comments
begin with an apostrophe (‘) or semi-colon (;) and continue until the end of the
line. The keyword REM may also be used for a comment.

Examples:
high 0 * meke output 0 high
high 0 ; make output O high
high 0 REM make out put 0 high

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 H

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

Constants

Constants are ‘fixed’ numbers that are used within the program. The software
supports word integers (any whole number between 0 and 65335).

Constants can be declared in four ways: decimal, hex, binary, and ASCII.

Decimal numbers are typed directly without any prefix.
Hexadecimal (hex) numbers are preceded with a dollar-sign ($) or (0x).
Binary numbers are preceded by a percent-sign (%).

ASCII text strings are enclosed in quotes ().

Examples:

100 * 100 deci nmal

$64 ‘ 64 hex

991100100 * 01100100 bi nary

A ‘ “A" ascii (65)

“Hel | 0” ‘ “Hello” - equivalent to “H,”e",”1","|","0"
Bl = BO N $AA * xor variable BO with AA hex

Symbols

Symbols can be assigned to constant values, and can also be used as alias names
for variables (see Variables overleaf for more details). Constant values and
variable names are assigned by following the symbol name with an equal-sign
(=), followed by the variable or constant.

Symbols can use any word that is not a reserved keyword (e.g. switch, step,
output, input, etc.)

Symbols can contain numeric characters and underscores (flash1l, flash_2 etc.)
but the first character cannot be a numeric (e.g. 1flash)

Use of symbol does not increase program length. See the symbol command entry
later in this manual for more information.

Example:

synmbol RED LED = 7 ‘ define a constant synbol

synmbol CCUNTER = b0 ‘ define a variable synbol

| et COUNTER = 200 ‘ preload variable wth value 200
| oop: ‘ define a program address

‘ address synbol end with col ons

hi gh RED_LED ‘ switch on output 7

pause COUNTER ‘ wait 0.2 seconds

| ow RED_LED ‘ switch off output 7

pause COUNTER ‘“ wait 0.2 seconds

goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 n

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

Variables

The RAM memory is used to store temporary data in variables as the program
runs. It looses all data when the power is removed or reset. There are three types
of variable - general purpose, storage, and special function.

See the ‘let’ command for details about variable mathematics.
General Purpose Variables.

There are 14 general purpose byte variables. These byte variables are labelled bO
to b13. Byte variables can store integer numbers between 0 and 255. Byte
variables cannot use negative numbers or fractions, and will ‘overflow’ without
warning if you exceed the 0 or 255 boundary values (e.g. 254 +3=1) (2-3=
255)

However for larger numbers two byte variables can be combined to create a word
variable, which is capable of storing integer numbers between 0 and 65335. These
word variables are labelled wO to w6, and are constructed as follows:

w0 = bl:b0
wl = b3:b2
w2 = b5:b4
w3 = b7:b6
w4 = b9:b8
wb = bl11:b10
w6 = b13:bi12

Therefore the most significant byte of wO is b1, and the least significant byte of
wO is bO0.

In addition bytes b0 and b1 (w0) are broken down into individual bit variables.
These bit variables can be used where you just require a single bit (0 or 1) storage
capability.

b0
bl

bit7: bit6: bit5: bit4: bit3: bit2: bitl: bit0
bitl5: bitl4: bit13: bit12: bit1l: bit10: bit9: bit8

You can use any word, byte or bit variable within any mathematical assignment or
command that supports variables. However take care that you do not accidentally
repeatedly use the same ‘byte’ or ‘bit’ variable that is being used as part of a ‘word’
variable elsewhere.

All general purpose variables are reset to O upon a program reset.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk n
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 ﬂ

OO0 nn

N

08M
18
18A
18X
28A
28X
40X

Oooooooood

mEnEnEnEnEnEnEnEE|

EpERERNERERERERERE

BASIC COMMANDS |

Storage Variables.

Storage variables are additional memory locations allocated for temporary storage
of byte data. They cannot be used in mathematical calculations, but can be used
to temporarily store byte values by use of the peek and poke commands.

The number of available storage locations varies depending on PICAXE type. The
following table gives the number of available byte variables with their addresses.
These addresses vary according to technical specifications of the microcontroller.
See the poke and peek command descriptions for more information.

PICAXE-08 none

PICAXE-08M 48 80 to 127 ($50 to $7F)

PICAXE-18 48 80 to 127 ($50 to $7F)

PICAXE-18A 48 80 to 127 ($50 to $7F)

PICAXE-18X 96 80 to 127 ($50 to $7F), 192 to 239 ($CO to $EF)
PICAXE-28A 48 80 to 127 ($50 to $7F)

PICAXE-28X 112 80to 127 ($50 to $7F), 192 to 239 ($CO to $FF)
PICAXE-40X 112 80to 127 ($50 to $7F), 192 to 239 ($CO to $FF)

Special Function Variables

The special function variables available for use depend on the PICAXE type.
PICAXE-08 / 08M Special Function Registers

pins = the input/ output port

dirs =the data direction register (sets whether pins are inputs or outputs)
infra = another term for variable b13, used within the 08M infrain2 command
The variable pins is broken down into individual bit variables for reading from
individual inputs with an if...then command. Only valid input pins are
implemented.

pins = X:Xx:X:pin4d:pin3:pin2: pinl:x

The variable dirs is also broken down into individual bits.
Only valid bi-directional pin configuration bits are implemented.

dirs = x:x:x:dird:x:dir2:dirl:x

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 n

O I | PICAXE-18 / 18A / 18X Special Function Registers
O -- 1 pins = the input port when reading from the port
q - H pins = the output port when writing to the port
o 18 H infra = a separate variable used within the infrain command
g 18A ¢ k | = h for inf d within the keyi d
o0 18X H eyvalue = another name for infra, used within the keyin comman
O - |
O - | Note that pins is a ‘pseudo’ variable that can apply to both the input and output
O - | port.
When used on the left of an assignment pins applies to the ‘output’ port e.g.
et pins = 941000011
will switch outputs 7,6,1,0 high and the others low.
When used on the right of an assignment pins applies to the input port e.g.
let bl = pins
will load b1 with the current state of the input port.
Additionally, note that
et pins = pins
means ‘let the output port equal the input port’
The variable pins is broken down into individual bit variables for reading from
individual inputs with an if...then command. Only valid input pins are
implemented.
pins = pin7 :pin6:x:x:X:pin2:pinl:pin0
o 0 H PICAXE-28A / 28X / 40X Special Function Registers
O - M
O - | pins = the input port when reading from the port
O -- | pins = the output port when writing to the port
O =" - infra = a separate variable used within the infrain command
E ZEA g keyvalue = another name for infra, used within the keyin command
o 28X o
o0 40X K Note that pins is a ‘pseudo’ variable that can apply to both the input and output

port.

When used on the left of an assignment pins applies to the ‘output’ port e.g.
et pins = 941000011
will switch outputs 7,6,1,0 high and the others low.

When used on the right of an assignment pins applies to the input port e.g.
let bl = pins
will load b1 with the current state of the input port.

Additionally, note that
et pins = pins
means ‘let the output port equal the input port’

The variable pins is broken down into individual bit variables for reading from
individual inputs with an if...then command.
pins = pin7:pin6: pin5: pind : pin3: pin2: pinl: pin0

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk n
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 n

d 0O h backward

] - |)

O . H Syntax:

0 18 5 BACKWARD motor

O 18A O - Motor is the motor name A or B.

o 18X @b

- %gQ - Function:

O |

0 40x Make a motor output turn backwards

Information:

This is a ‘pseudo’ command designed for use by younger students with pre-
assembled classroom models. It is actually equivalent to ‘low 4 : high 5’ (motor
A) or ‘low 6: high 7’ (motor B). This command is not normally used outside of
the classroom.

Example:

| oop: forward A motor a on forwards

wait 5 ‘ wait 5 seconds
backward A ‘ notor a on backwards
wait 5 ‘ wait 5 seconds

halt A ‘ notor A stop

wait 5 ‘ wait 5 seconds

goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk n
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 In

g 0O p branch

O 08 O .

d osm b Syntax:

0 18 h BRANCH offset,(addressO,address1...addressN)

O 18A O - Offset is a variable/constant which specifies which Address# to use (0-N).
0 18X b - Addresses are labels which specify where to go.

o 28A O

E 235 g Function:

Branch to address specified by offset (if in range).

Information:

This command allows a jump to different program positions depending on the
value of the variable ‘offset’. If offset is value 0, the program flow will jump to
address0, if offset is value 1 program flow will jump to adddress1 etc.

If offset is larger than the number of addresses the whole command is ignored
and the program continues at the next line.

Example:
reset: let bl =0
low 0
low 1
| ow 2
| ow 3

main: let bl =bl +1
if bl > 3 then reset
branch b1, (btn0, btnl, btn2, btn3)

btn0: high O
goto main
btnl: high1
goto main
btn2: high 2
goto main
btn3: high 3
goto main

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 I!I

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

button

Syntax:

BUTTON pin,downstate,delay,rate,bytevariable,targetstate,address

- Pinisavariable/constant (0-7) which specifies the i/o pin to use.

- Downstate is a variable/constant (O or 1) which specifies what logical state is
read when the button is pressed.

- Delay is a variable/constant (0-255) which specifies time before a repeat if
BUTTON is used within a loop.

- Rate is a variable/constant (0-255) which specifies the auto-repeat rate in
BUTTON cycles.

- Bytevariable is the workspace. It must be cleared to O before being used by
BUTTON for the first time.

- Targetstate is a variable/constant (0O or 1) which specifies what state (O=not
pressed, 1=pressed) the button should be in for a branch to occur.

- Address is a label which specifies where to go if the button is in the target
state.

Function:
Debounce button, auto-repeat, and branch if button is in target state.

Infomation:

When mechanical switches are activated the metal ‘contacts’ do not actually close
in one smooth action, but ‘bounce’ against each other a number of times before
settling. This can cause microcontrollers to register multiple ‘hits’ with a single
physical action, as the microcontroller can register each bounce as a new hit.

One simple way of overcoming this is to simply put a small pause (e.g. pause 10)
within the program, this gives time for the switch to settle.

Alternately the button command can be used to overcome these issues. When the
button command is executed, the microcontroller looks to see if the ‘downstate’
is matched. If this is true the switch is debounced, and then program flow jumps
to ‘address’ if ‘targetstate’ = 1. If targetstate = ‘0’ the program continues.

If the button command is within a loop, the next time the command is executed
‘downstate’ is once again checked. If the condition is still true, the variable
‘bytevariable’ is incremented. This can happen a number of times until
‘bytevariable’ value is equal to ‘delay’ At this point a jump to ‘address’ is made if
‘targetstate’ = 1. Bytevariable is then reset to 0 and the whole process then repeats,
but this time the jump to ‘address’ is made when the ‘bytevariable’ value is equal
to ‘rate.

This gives action like a compter keyboard key press - send one press, wait for
‘delay’, then send multiple presses at time interval ‘rate’.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 IE

Note that button should be used within a loop. It does not pause program flow
and so only checks the input switch condition as program flow passes through
the command.

Example:

| oop: button 0, 0, 200, 100, b2, 0, cont
‘ junp to cont unless pin0 =0

toggle 1 ‘ el se toggle input
goto | oop
cont: etc.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 IE

OO0 nM[Q

]
08M

18A
18X

OooooooOonOood

BASIC COMMANDS |

calibfreq

Syntax:
CALIBFREQ {-} factor
- factor is a constant/variable containing the value -31 to 31

Function:
Calibrate the microcontrollers internal resonator. 0 is the default factory setting.

Information:
Some PICAXE chips have an internal resonator that can be set to 4 or 8Mhz
operation via the setfreq command.

On these chips it is also possible to ‘calibrate’ this frequency. This is an advanced
feature not normally required by most users, as all chips are factory calibrated to
the most accurate setting. Generally the only use for calibfreq is to slightly adjust
the frequency for serial transactions with third party devices. A larger positive
value increases speed, a larger negative value decreases speed. Try the values -4 to
+ 4 first, before going to a higher or lower value.

Use this command with extreme care. It can alter the frequency of the PICAXE
chip beyond the serial download tolerance - in this case you will need to perform
a ‘hard-reset’ in order to carry out a new download.

The calibfreq is actually a pseudo command that performs a ‘poke’ command on
the microcontrollers OSCTUNE register (address $90).

When the value is 0 to 31 the equivalent BASIC code is
poke $90, factor
pause 2

When the factor is -31 to -1 the equivalent BASIC code is
let bl2 = 64 - factor
poke $90, factor
pause 2

Note that in this case variable b12 is used, and hence corrupted, by the
command. This is necessary to poke the OSCTUNE register with the correct value.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 III

OO0 n0MnQ

]
08M
18X
28X
40X

Ogoooooood

BASIC COMMANDS |

count

Syntax:

COUNT pin, period, variable

- Pin s avariable/constant (0-7) which specifies the input pin to use.
- Period is a variable/constant (1-65535ms at 4MHz).

- Variable receives the result (use a word variable) (0-65535).

Function:
Count pulses on an input pin.

Information:

Count checks the state of the input pin and counts the number of low to high
transitions within the time ‘period’ A word variable should be used for ‘variable’.
At 4MHz the input pin is checked every 20us, so the highest frequency of pulses
that can be counted is 25kHz, presuming a 50% duty cycle (ie equal on-off time).

Take care with mechanical switches, which may cause multiple ‘hits’ for each
switch push as the metal contacts ‘bounce’ upon closure.

Affect of increased clock speed:

The period value is 0.5ms at 8MHz and 0.25ms at 16MHz.

At 8MHz the input pin is checked every 10us, so the highest frequency of pulses
that can be counted is 50kHz, presuming a 50% duty cycle (ie equal on-off time).
At 16MHz the input pin is checked every 5us, so the highest frequency of pulses
that can be counted is 100kHz, presuming a 50% duty cycle (ie equal on-off
time).

Example:

| oop:
count 1, 5000, wi ‘ count pulses in 5 seconds
debug wi * display val ue
goto | oop ‘ else loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 IE

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

debug

debiug
Syntax:
DEBUG {var}
- Varis an optional variable value (e.g. b1). It's value is not of importance and
is included purely for compatibility with older programs.

Function:

Display variable information in the debug window when the debug command is
processed. Byte information is shown in decimal, binary, hex and ascii notation.
Word information is shown in decimal and hex notation.

Information:

The debug command uploads the current variable values for *all* the variables
via the download cable to the computer screen. This enables the computer screen
to display all the variable values in the microcontroller for debugging purposes.
Note that the debug command uploads a large amount of data and so
significantly slows down any program loop.

To display user defined debugging messages use the ‘sertxd’ command instead.

Affect of increased clock speed:

When using an 8 or 16Mhz clock speed ensure the software has been set with the
correct speed setting to enable successful communication between
microcontroller and PC.

Example:
| oop:
let b1 = bl +1 * increnment value of bl
readadc 2, b2 ‘ read an anal ogue val ue
debug bl * display values on conputer screen
pause 500 ‘ wait 0.5 seconds
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 IE

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

data

eeprom

Syntax:

DATA {location},(data,data...)

EEPROM {location},(data,data...)

- Location is an optional constant (0-255) which specifies where to begin
storing the data in the eeprom. If no location is specified, storage continues
from where it last left off. If no location was initially specified, storage begins
at 0.

- Data are constants (0-255) which will be stored in the eeprom.

Function:

Preload EEPROM data memory. If no EEPROM command is used the values are
automatically cleared to the value 0. The keywords DATA and EEPROM have
identical functions and either can be used.

Information:
This is not an instruction, but a method of pre-loading the microcontrollers data
memory. The command does not affect program length.

With the PICAXE-08, 08M and 18 the data memory is shared with program
memory. Therefore only unused bytes may be used within a program. To establish
the length of the program use ‘Check Syntax’ from the PICAXE menu. This will
report the length of program. Available data addresses can then be used as
follows:

PICAXE-08 0to (127 - number of used bytes)
PICAXE-08M 0 to (255 - number of used bytes)
PICAXE-18 0 to (127 - number of used bytes)

With the following microcontrollers the data memory is completely separate
from the program and so no conflicts arise. The number of bytes available varies
depending on microcontroller type as follows.

PICAXE-28, 28A 0to 63
PICAXE-28X, 40X 0to 127
PICAXE-18A, 18X 0 to 255
Example:
EEPROM O, (“Hel 1 0 World”) ‘ save val ues in EEPROM
mai n:
for bO =0to 10 ‘ start a |l oop
read b0, bl ‘ read val ue from EEPROV
serout 7, N2400, (bl) ‘' transnmit to serial LCD nodul e
next b0 ‘ next character

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 Iﬂ

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

end

Syntax:
END

Function:

Sleep terminally until the power cycles (program re-runs) or the PC connects for a
new download. Power is reduced to an absolute minimum (assuming no loads
are being driven) and internal timers are switched off.

Information:

The end command places the microcontroller into low power mode after a
program has finished. Note that as the compiler always places an END instruction
after the last line of a program, this command is rarely required.

The end command switches off internal timers, and so commands such as servo
and pwmout that require these timers will not function after an end command
has been completed.

If you do not wish the end command to be carried out, place a ‘stop’ command at
the bottom of the program. The stop command does not enter low power mode.

The main use of the end command is to separate the main program loop from
sub-procedures as in the example below. This ensures that programs do not
accidentally ‘fall into’ the sub-procedure.

Example:
| oop
let b2 =15 ‘ set b2 value
pause 2000 ‘“wait for 2 seconds
gosub flsh ‘ call sub-procedure
let b2 =5 ‘ set b2 value
pause 2000 ‘“wait for 2 seconds
end ‘ stop accidentally falling into sub
flsh
for bO =1to b2 * define loop for b2 tinmes
high 1 ‘ switch on output 1
pause 500 ‘“ wait 0.5 seconds
low 1 ‘ switch off output 1
pause 500 ‘“ wait 0.5 seconds
next b0 ‘ end of |oop
return “ return fromsub-procedure

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 IE

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

for...next

Syntax:
FOR variable = start TO end {STEP {-}increment}
(other program lines)

NEXT {variable}

- Variable will be used as the loop counter

- Start is the initial value of variable

- End is the finish value of variable

- Increment is an optional value which overrides the default counter value of
+1. If Increment is preceeded by a ‘-, it will be assumed that Start is greater
than End, and therefore increment will be subtracted (rather than added) on
each loop.

Function:
Repeat a section of code within a FOR-NEXT loop.

Information:

For...next loops are used to repeat a section of code a number of times. When a
byte variable is used, the loop can be repeated up to 255 times. Every time the
‘next’ line is reached the value of variable is incremented (or decremented) by the
step value (+1 by default). When the end value is exceeded the looping stops and
program flow continues from the line after the next command.

For...next loops can be nested 8 deep (remember to use a different variable for
each loop).

Example:
| oop:
for bO =1to 20 * define loop for 20 times
high 1 ‘ switch on output 1
pause 500 ‘ wait 0.5 seconds
low 1 ‘ switch off output 1
pause 500 ‘ wait 0.5 seconds
next b0 ‘ end of |oop
pause 2000 ‘“wait for 2 seconds
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 IE

OO0 nn

18A
18X
28A
28X
40X

Oooooooood

BASIC COMMANDS |

forward

Syntax:
FORWARD motor
- Motor is the motor name A or B.

Function:
Make a motor output turn forwards

Information:

This is a ‘pseudo’ command designed for use by younger students with pre-
assembled classroom models. It is actually equivalent to ‘high 4 : low 5’ (motor
A) or ‘high 6: low 7’ (motor B). This command is not normally used outside the

classroom.

Example:
forward A ‘ nmotor a on forwards
wait 5 ‘ wait 5 seconds
backward A ‘ motor a on backwards
wait 5 ‘ wait 5 seconds
halt A ‘ motor A reverse
wait 5 ‘ wait 5 seconds
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 m

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

gosub

Syntax:
GOSUB address

- Address is a label which specifies where to gosub to.

Function:

Go to sub procedure at ‘address’, then ‘return’ at a later point.

Information:

The gosub (‘goto subprocedure’) Standard | Interrupt | o
S - Gosub Gosub

command is a ‘temporary’ jump to a

separate section of code, from which PICAXE-08 16 0 4

you will later return (via the return

command). Every gosub command PICAXE-08M 15 1 4

MUST be matched by a corresponding

PICAXE-18 16 0 4
return command.

PICAXE-18A 15 1 4
Do not confuse with the ‘goto’
command which is a permanent jump | PICAXE-18X | 15 or 255 1 4
to a new program location.

PICAXE-28A 15 1 4
The table shows the maximum

PICAXE-28X | 15or 255 1 4

number of gosubs available in each
microcontroller . Gosubs can be PICAXE-40X | 15 or 255 1 4
nested 4 deep (ie there is a four level

stack available in the microcontroller).
Note that for the option for 255 gosubs on the X parts you will require PICAXE-
18X firmware >=8.2 or PICAXE-28X/40X firmware >=7.4

Sub procedures are commonly used to reduce program space usage by putting
repeated sections of code in a single sub-procedure. By passing values to the sub-
procedure within variables, you can repeat a section of code from multiple places
within the program. See the sample below for more information.

Example:

| oop
let b2 =15
pause 2000
gosub flsh
let b2 =5
pause 2000
gosub flsh
end

flsh

for bO =1 to b2
high 1
pause 500
| ow 1
pause 500

next b0

return

‘

set b2 val ue

wait for 2 seconds

cal | sub-procedure

set b2 val ue

wait for 2 seconds

cal | sub-procedure

stop accidentally falling into sub

define loop for b2 tines
switch on output 1

wait 0.5 seconds

switch off output 1

wai t 0.5 seconds

end of |oop

return from sub-procedure

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 EI

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

goto

Syntax:
GOTO address

- Address is a label which specifies where to go.

Function:
Go to address.

Information:

The goto command is a permanent ‘jump’ to a new section of the program. The

jump is made to a label.

Example:

| oop
high 1
pause 5000
low 1
pause 5000
goto | oop

‘

switch on output 1
wait 5 seconds
switch of f output 1
wait 5 seconds

| oop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nn

18A
18X
28A
28X
40X

Oooooooood

BASIC COMMANDS |

halt

Syntax:
HALT motor
- Motor is the motor name A or B.

Function:
Make a motor output stop.

Information:

This is a ‘pseudo’ command designed for use by younger students with pre-
assembled classroom models. It is actually equivalent to ‘low 4 : low 5’ (motor A)
or ‘low 6: low 7’ (motor B). This command is not normally used outside the

classroom.

Example:
forward A ‘ nmotor a on forwards
wait 5 ‘ wait 5 seconds
backward A ‘ motor a on backwards
wait 5 ‘ wait 5 seconds
halt A ‘ motor A reverse
wait 5 ‘ wait 5 seconds
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

high
Syntax:
HIGH pin

- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:
Make pin output high.

Information:

The high command switches an output on (high).
On microcontrollers with configurable input/output pins (e.g. PICAXE-08) this
command also automatically configures the pin as an output.

Example:

loop: high 1
pause 5000
low 1
pause 5000
goto | oop

‘

switch on output 1
wait 5 seconds
switch of f output 1
wait 5 seconds

| oop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 EI

O O h high portc

O - | .

o B - Syntax: _

0 - B HIGH PORTC pin

O - | - Pin is a variable/constant (0-7) which specifies the i/o pin to use.
O - |

o = H Function:

O 28X o Make pin on portc output high.

o 40X QH

Information:
The high command switches a portc output on (high).

Example:

| oop: high portc 1 ‘ switch on output 1
pause 5000 ‘ wait 5 seconds
| ow portc 1 ‘ switch off output 1
pause 5000 ‘ wait 5 seconds
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 n0MnQ

Ogoooooood

BASIC COMMANDS |

i2cslave

Syntax:

12CSLAVE slave, speed, address

- Slave is the i2c slave address

- Speed is the keyword i2cfast (400kHz) or i2cslow (100kHz) at 4Mhz
- Address is the keyword i2cbyte or i2cword

Function:
The i2cslave command is used to configure the PICAXE pins for i2c use and to
define the type of i2c device to be addressed.

Description:
Use of i2c parts is covered in more detail in the separate ‘i2c Tutorial’ datasheet.

If you are using a single i2c device you generally only need one i2cslave
command within a program. With the PICAXE-18X device you should issue the
command at the start of the program to configure the SDA and SCL pins as inputs
to conserve power.

After the i2cslave has been issued, readi2c and writel2c can be used to access the
i2c device.

Slave Address
The slave address varies for different i2c devices (see table below). For the
popular 24LCxx series serial EEPROMSs the address is commonly %1010Xxxx.

Note that some devices, e.g. 24LC16B, incorporate the block address (ie the
memory page) into bits 1-3 of the slave address. Other devices include the
external device select pins into these bits. In this case care must be made to
ensure the hardware is configured correctly for the slave address used.

Bit O of the slave address is always the read/write bit. However the value entered
using the i2cslave command is ignored by the PICAXE, as it is overwritten as
appropriate when the slave address is used within the readi2c and writei2c
commands.

Speed

Speed of the i2¢ bus can be selected by using one of the two keywords i2cfast or
i2cslow (400kHz or 100kHz). The internal slew rate control of the
microcontroller is automatically enabled at the 400kHz speed (28/40X). Note
that the 18X internal architecture means that the slower speed is always used with
the 18X, as it is not capable of processing at the faster speed.

Affect of Increased Clock Speed:
Ensure you modify the speed keyword (i2cfast8, i2cslow8) at 8MHz or
(i2cfast16, i2cslowl6) at 16MHz for correct operation.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 m

Address Size

i2c devices commonly have a single byte (i2cbyte) or double byte (i2cword)
address. This must be correctly defined for the type of i2¢ device being used. If
you use the wrong definition erratic behaviour will be experienced.

When using the i2cword address size you must also ensure the ‘address’ used in
the readi2c and writei2c commands is a word variable.

Settings for some common parts:

Device Type Slave Speed Address
24L.C01B EE 128 %1010xxxx i2cfast i2cbyte
241L.C02B EE 256 %1010xxxx i2cfast i2cbyte
24L.C04B EE 512 %1010xxbx i2cfast i2cbyte
241.C08B EE 1kb %1010xbbx i2cfast i2cbyte
24L.C168B EE 2kb %1010bbbx i2cfast i2cbyte
24L.C64 EE 8kb %1010dddx i2cfast i2cword
241.C256 EE 64kb %1010dddx i2cfast i2cword
DS1307 RTC %1101000x i2cslow i2cbyte
MAX6953 5x7 LED %101ddddx i2cfast i2cbyte
AD5245 Digital Pot %010110dx i2cfast i2cbyte
SRF08 Sonar %1110000x i2cfast i2cbyte
AXEO33 12C LCD $C6 i2cslow i2cbyte
CMPS03 Compass %21100000x i2cfast i2cbyte
SPEO30 Speech %1100010x i2cfast i2cbyte
x = don’t care (ignored)

b = block select (selects internal memory page within device)
d = device select (selects device via external address pin polarity)

See readi2c or writei2c for example program for DS1307 real time clock.

4k7 4k7

<
T
<
T

Note the 12C device
may have chip enable,
write protect and/or
address pins that will
also require connection
to OV or V+ as
appropriate.

Clock - SCL e SCL
Data - SDA SDA

PICAXE

[=]
<

I2C DEVICE

ov

NB: many project boards
are pre-fitted with pull-
down resistors on the input
pins. These must be
removed to use the 12C
device like this.

ov

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 m

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

if...then ¢:v

if...and...then

if...or...then

Syntax:

IF variable ?? value {AND/OR variable ?? value ...} THEN address

- Variable(s) will be compared to value(s).

- Value is a variable/constant.

- Address is a label which specifies where to go if condition is true.

?? can be any of the following conditions

= equal to

is equal to

<> not equal to

1= not equal to

> greater than

>= greater than or equal to
< less than

<= less than or equal to
Function:

Compare and conditionally jump to a new program position.

Information:

The if...then command is used to test input pin variables (or general variables) for
certain conditions. If these conditions are met program flow jumps to the new
label. If the condition is not met the command is ignored and program flow
continues on the next line.

When using inputs the input variable (pinl, pin2 etc) must be used (not the
actual pin name 1, 2 etc.) i.e. the line must read ‘if pinl = 1 then..;, not‘if 1 =1
then..!

The if...then command only checks an input at the time the command is
processed. Therefore it is normal to put the if...then command within a program
loop that regularly scans the input. For details on how to permanently scan for an
input condition using interrupts see the ‘setint’ command.

Examples:
Checking an input within a loop.

| oop:
if pin0 =1then flsh * junp to flshif pin0 is high
goto | oop ‘ else loop back to start
flsh: high 1 ‘ switch on output 1
pause 5000 ‘“ wait 5 seconds
low 1 ‘ switch off output 1
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 m

Multiple compares can be combined with the AND and OR keywords.

2 input AND gate
if pinl = 1 and pin2 = 1 then label

3 input AND gate
if pin0 =1 and pinl =1 and pin2 = 1 then label

2 input OR gate
if pinl =1 or pin2 =1 then label

analogue value between certain values
readadc 1,b1
if b1 >=100 and bl <= 200 then label

To read the whole input port at once the variable ‘pins’ can be used
if pins = %10101010 then label

To read the whole input port and mask individual inputs (e.g. 6 and 7)

let b1l = pins & %11000000
if b1 = %11000000 then label

The words is (=), on (1) and off (0) can also be used with younger students.

| oop:
if pin0Ois onthen flsh® junp to flshif pin0 is high
goto | oop ‘ else loop back to start
flsh: high 1 ‘ switch on output 1
pause 5000 ‘ wait 5 seconds
low 1 ‘ switch off output 1
goto | oop ‘ loop back to start

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 m

OO0 nn

Oooooooood

BASIC COMMANDS |

infrain

Syntax:
INFRAIN

Function:
Wait until a new infrared command is received.

Description:

This command is primarily used to wait for
a new infrared signal from the infrared TV
style transmitter. It can also be used with
an infraout signal from a separate PICAXE-
08M chip. All processing stops until the
new command is received. The value of the
command received is placed in the
predefined variable ‘infra.

The infra-red input is input 0 on all parts
that support this command.

The variable ‘infra’ is separate from the
other byte variables.

After using this command you may have to

LEDO020
_

=

WN =

perform a ‘hard reset’ to download a new
program to the microcontroller. See the

Serial Download section for more details.

Affect of Increased Clock Speed:

This command will only function at 4AMHz

Use of TVRO010 Infrared Remote Control:

The table shows the value that will be

placed into the variable ‘infra’ depending

on which key is pressed on the transmitter.

Before use (or after changing batteries) the

TVRO10 transmitter must be programmed

with ‘Sony’ codes as follows:

1. Insert 3 AAA size batteries, preferably

alkaline.

Press ‘C’. The LED should light.

Press ‘2" The LED should flash.

Press ‘1. The LED should flash.

5Vo o
~ 14
1@ input 0 only
‘e i PICAXE
+
4.7uF
ovo T o
Key Value

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9
P+ 10
0 11
V+ 12
P- 13
10+ 14
V- 15
Mute 16
Power 17

ok~ wb

Press ‘2" The LED should flash and
then go out.

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

BASIC COMMANDS |

Section 2 m

| oop:

swonl:
swon2

swon3:

swof f 1

swof f 2

swof f 3

Example:
infrain
if infra=
if infra=
if infra=
if infra=
if infra=
if infra=
goto | oop
hi gh
goto
hi gh
goto
hi gh
goto
low 1
goto
| ow 2
goto
| ow 3
goto

1 then
2 then
3 then
4 then
5 then
6 then

1
| oop
2
| oop
3
| oop

| oop

| oop

| oop

swonl
swon2
swon3
swof f 1
swof f 2
swof f 3

"wait for new signa
"switch
"switch
"switch
"switch
"switch
"switch

on 1
on 2
on 3
off 1
off 2
off 3

>

IEERMEEEE

3] o] [e)[=][r] O
(o] (5] (5] [e] [0 [«] [¢]

revolution

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 EI

OO0 nn

Oooooooood

BASIC COMMANDS |

infrain2

Syntax:
INFRAIN2

Function:
Wait unti a new infrared command is received.

Description:

This command is used to wait for an
infraout signal from a separate PICAXE-
08M chip. It can also be used with an 5V 0

WN =

=)

infrared signal from the infrared TV style
transmitter. All processing stops until the
new command is received. The value of the
command received is placed in the

predefined variable ‘infra’ This will be a 1@

number between 0 and 127. See the i
infraout command for more details about
the values that will be received from the

oV o O

¢ |
~ x
x~ S
< @
™
input 3 only
2@ PICAXE
+
4.7uF
I L

TVRO10 remote control.

On the PICAXE-08M ‘infra’ is another name for ‘b13’ - it is the same variable.
The infra-red input is fixed to input 3 on the PICAXE-08M.

After using this command you may have to perform a ‘hard reset’ to download a
new program to the microcontroller. See the Serial Download section for more

details.

Affect of Increased Clock Speed:

This command will only function at 4MHz. Use a setfreq m4 command before

this command if using 8MHz speed,

Example:
| oop:
i nfrain2 "wait for new signal
if infra =1 then swonl "switch on 1
if infra =2 then swon2 "switch on 2
if infra =4 then swffl "switch off 1
if infra =25 then swoff2 "switch off 2
goto | oop
swonl: high 1
goto | oop
swonz2: hi gh 2
goto | oop
swof f 1: low 1
goto | oop
swof f 2: I ow 2
goto | oop

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nn

Oooooooood

BASIC COMMANDS |

infraout

Syntax:

INFRAOUT device,data

- device is a constant/variable (valid device ID 1-31)
- data is a constant/variable (valid data 0-127)

Function:
Transmit an infra-red signal, modulated at 38kHz.

Description:

This command is used to transmit the infra-red data to Sony ™ device (can also be
used to transmit data to another PICAXE that is using the infrain or infrain2
command). Data is transmitted via an infra-red LED (connected on output 0)
using the SIRC (Sony Infra Red Control) protocol.

device - 5 bit device ID (0-31)
data - 7 bit data (0-127)

When using this command to transmit data to another PICAXE the device ID
used must be value 1 (TV). The infraout command can be used to transmit any of
the valid TV command 0-127. Note that the Sony protocol only uses 7 bits for
data, and so data of value 128 to 255 is not valid.

Therefore the valid infraout command for use with infrain2 is

infraout 1,x * (where x = 0 to 127)

Sony SIRC protocol:
The SIRC protocol uses a 38KHz modulated infra-red signal consisting of a start

Start Data0 | Datal | Data2 | Data3 | Data4 | Data5 | Data6

DO ID1 ID2 ID3 D4

l2or|12or|12o0r|120r|120r|120r|120r|120r|120r|120r|120r|120r

2.4ms 0.6ms | 0.6ms | 0.6ms | 0.6ms | 0.6ms | 0.6ms | 0.6ms | 0.6ms | 0.6ms | 0.6ms | 0.6ms | 0.6ms

bit (2.4ms) followed by 12 data bits (7 data bits and 5 device ID bits). Logic level
1 is transmitted as a 1.2 ms pulse, logic 0 as a 0.6ms pulse. Each bit is separated
by a 0.6ms silence period.

Example:

All commercial remote controls repeat the signal every 45ms whilst the button is
held down. Therefore when using the PICAXE system higher reliability may be
gained by repeating the transmission (e.g. 10 times) within a for..next loop.

forbl=1to 10
infraout 1,5
pause 45

next bl

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

Www.picaxe.co.uk

Section 2 E

BASIC COMMANDS |

Interaction between infrain, infrain2 and infraout command.

Infrain and Infraout

The original infrain command
was designed to react to signals
from the TV style remote control
TVRO010. Therefore it only
acknowledges the data sent from
the 17 buttons on this remote
(1-9, 0. 10+, P+, P-, V+, V-,
MUTE, PWR) with a value
between 1 and 17.

The infraout command can be
used to ‘emulate’ the TVR010
remote to transit signals that will
be acceptable for the infrain
command. The values to be used
for each TV remote button are
shown in the table.

Infrain2 and Infraout

The infrain2 command will react
to any of the valid TV data
commands (0 to 127).

The infraout command can be
used to transmit any of the valid
TV command 0-127. Note that
the Sony protocol only uses 7
bits for data, and so data of 128
to 255 is not valid.

Therefore the valid infraout
command for use with infrain2
is (where x =0 to 127)
infraout 1,x

Affect of Increased Clock Speed:

TVR010 TV infraout equivalent _infrain i_nfrain2
Remote variable data variable data
Control command value value

1 infraout 1,0 1 0
2 infraout 1,1 2 1
3 infraout 1,2 3 2
4 infraout 1,3 4 3
5 infraout 1,4 5 4
6 infraout 1,5 6 5
7 infraout 1,6 7 6
8 infraout 1,7 8 7
9 infraout 1,8 9 8
P+ infraout 1,16 10 16
0 infraout 1,9 1 9
V+ infraout 1,18 12 18
P- infraout 1,17 13 17
10+ infraout 1,12 14 12
V- infraout 1,19 15 19
MUTE infraout 1,20 16 20
PWR infraout 1,21 17 21

This command will only function at 4AMHz.

Common Sony Device IDs.:
TV 1
VTR1

Text

Widescreen
MDP / Laserdisk
VTR2

~N o b WN

VTR3

Surround Sound 12
Audio 16
CD Player 17
Pro-Logic 18
DVD 26

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk

reVO I uti O n Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 BI

BASIC COMMANDS |

Button infraout data for a typical Sony TV (device ID 1)

000
001
002
003
004
005
006
007
008
009
on

016
017
018
019
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
038
039
041
042
047
048
054
058
059
064
065
066

1 button

2 button

3 button

4 button

5 button

6 button

7 button

8 button

9 button

10 button/0 button
Enter

channel up
channel down
volume up

volume down

Mute

Power

Reset TV

Audio Mode:Mono/SAP/Stereo
Picture up

Picture down
Color up

Color down
Brightness up
Brightness down
Hue up

Hue down
Sharpness up
Sharpness down
Select TV tuner
Balance Left
Balance Right
Surround on/off
Aux/Ant

Power off

Time display

Sleep Timer
Channel Display
Channel jump
Select Input Videol
Select Input Video2
Select Input Video3

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

BASIC COMMANDS |

Button infraout data for a typical Sony TV (continued...)

074
078
079
088
089
091
092
094
095
096
097
098
099
107
12
13
114
115
116
n7
120
121
125
127

Noise Reduction on/off
Cable/Broadcast
Notch Filter on/off

PIP channel up

PIP channel down

PIP on

Freeze screen
PIP position
PIP swap
Guide

Video setup
Audio setup
Exit setup
Auto Program
Treble up
Treble down
Bass up

Bass down

+ key

- key

Add channel
Delete channel

Trinitone on/off
Displays a red RtestS on the screen

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk

revolution oumss:

WWW. picaxe.co.uk

Section 2 E

BASIC COMMANDS |

Button infraout data for a typical Sony VCR (device ID 2 or 7)

000
001
002
003
004
005
006
007
008
009
010
o1
012
013
020
021
022
023
024
025
026
027
028
029
032
035
040
041
042
045
047
048
049
060
070
078
083
106
107

1 button

2 button

3 button

4 button

5 button

6 button

7 button

8 button

9 button

10 button/0 button
11 button

12 button

13 button

14 button

X 2 play w/sound
power

eject
L-CH/R-CH/Stereo
stop

pause

play

rewind

FF

record

pause engage

X 1/5 play

reverse visual scan
forward visual scan
TVIVTR

VTR from TV
power off

single frame reverse/slow reverse play
single frame advance/slow forward play
aux

counter reset
TV/VTR

index (scan)

edit play
mark

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nn

oo oood

BASIC COMMANDS |

input

Syntax:
INPUT pin

- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:
Make pin an input.

Information:

This command is only required on microcontrollers with programmable input/
output pins (e.g. PICAXE-08M). This command can be used to change a pin that
has been configured as an output back to an input.

All pins are configured as inputs on first power-up (apart from outO on the
PICAXE-08, which is always an output).

Example:

| oop:
input 1
reverse 1
reverse 1
output 1

make
make
make
make

pin
pin
pin
pin

i nput
out put
i nput
out put

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

OO0 nn

Oooooooood

BASIC COMMANDS |

Syntax:
KEYIN

Function:
Wait until a new keyboard press is received.

Information:

This command is used to wait for a new key press from a computer keyboard
(connected directly to the PICAXE - not the keyboard used whilst programming,
see keyled command for connection details). All processing stops until the new
key press is received. The value of the key press received is placed in the
predefined variable ‘keyvalue’.

Note the design of the keyboard means that the value of each key is not logical,
each key value must be identified from the table on the next page. Some keys use
two numbers, the first $EO is ignored by the PICAXE and so keyvalue will return
the second number. Note all the codes are in hex and so should be prefixed with
$ whilst programming. The PAUSE and PRNT SCRN keys cannot be used reliably
as they have a special long multi-digit code.. Also note that some keys may not
work correctly when the ‘Nums Lock’ LED is set on with the keyled command.

The sample file ‘keyin.bas’ (installed in the \samples folder) provides details on
how you can convert the key presses into ASCII characters by means of a look up
table.

After using this command you may have to perform a ‘hard reset’ to download a
new program to the microcontroller. See the Serial Download section for more
details.

Affect of Increased Clock Speed:
This command will only function at 4AMHz.

Example:
| oop:
keyin "wait for new signal
i f keyvalue = $45 then swonl "switch on 1
i f keyvalue = $16 then swon2 "switch on 2
if keyvalue = $25 then swoff1l "switch off 1
if keyvalue = $2E then swoff2 "switch off 2
goto | oop
swonl: high 1
goto | oop
swon2: hi gh 2
goto | oop
swof f 1: low 1
goto | oop
swof f 2: | ow 2
goto | oop

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 E

BASIC COMMANDS |

KEY CODE KEY CODE KEY CODE

A 1C 9 46 [54
B 32 OE INSERT E0,70
C 21 - 4E HOME E0.6C
D 23 = 55 PG UP E0.7D
E 24 \ 5D DELETE E0,71
F 2B BKSP 66 END E0,69
G 34 SPACE 29 PG DN E0,7A
H 33 TAB 0D U ARROW E0.75
I 43 CAPS 58 L ARROW E0.6B
J 3B L SHIFT 12 D ARROW E0,72
K 42 L CTRL 14 R ARROW E0,74
L 4B L GUI EO,IF NUM 77
M 3A LALT 11 KP/ E0.4A
N 31 R SHFT 59 KPp* 7C
O 44 R CTRL E0,14 KP- 7B
P 4D R GUI E0,27 KP + 79
Q 15 RALT EO0,11 KPEN E0.5A
R 2D APPS E0.2F KP. 71
S 1B ENTER 5A KPO 70
T 2C ESC 76 KP1 69
U 3C F1 05 KP2 72
v 2A F2 06 KP3 TA
w 1D F3 04 KP4 6B
X 22 F4 06 KP5 73
Y 35 F5 03 KP6 74
Z 1A F6 0B KP7 6C
0 45 F7 83 KP38 75
1 16 F8 0A KP9 7D
2 1E F9 01] 5B
3 26 F10 09 H 4C
4 25 F11 78 ! 52
5 2E F12 07 . 41
6 36 PRNT SCR 7 49
7 3D SCROLL 7E / 4A
8 3E PAUSE 7

revolutio

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk

Version 5.2 05/2004

WWWw.picaxe.co.uk BASIC COMMANDS |

Section 2 Iu

g 0O B keyled

O - o)

O . H Syntax:

O - 0O keyled mask

O 18A [- Mask is a variable/constant which specifies the LEDs to use.
o 18X o

- ggQ - Function:

O |

O 40X 5 Set/clear the keyboard LEDs

Information:

This command is used to control the LEDs on a computer keyboard (connected
directly to the PICAXE - not the keyboard used whilst programming). The mask
value sets the operation of the LEDs.

Mask is used as follows:

Bit0 - Scroll Lock (1=0on, 0=0ff)

Bit1 - Num Lock (1=0n, 0=0ff)

Bit2 - Caps Lock (1=on, 0=0ff)

Bit 3-6 - Not Used

Bit 7 - Disable Flash (1=no flash, O=flash)

On reset mask is set to 0, and so all three LEDs will flash when the ‘keyin’
command detects a new key hit. This provides the user with feedback that the key
press has been detected by the PICAXE. This flashing can be disabled by setting
bit 7 of mask high. In this case the condition of the three LEDs can be manually
controlled by setting/clearing bits 2-0.

Affect of Increased Clock Speed:
This command will only function at 4AMHz.

Example:
| oop:
keyl ed 940000111 * all LEDs on
pause 500 ‘ pause 0.5s
keyl ed 440000000 ‘ all LEDs off
pause 500 ‘ pause 0.5s
goto | oop ‘ loop
5V »
4k7 4k7
4
Plug (on cable) E v AT
8:) Clock[g @ input6 é
E Data input? O
fl ! o
Socket (on pcb) X oV oV
3
6-pin Mini-DIN (PS/2)
1 - Data (to PICAXE input7))
2 - Not used NB: most project boards
3 -0V Ground are pre-fitted with pull-
4 - +5V Supply down resistors on the input
5 - Clock (to PICAXE input6) pins. These must be
6 - Not used removed to use the
keyboard like this.
ov

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 I!I

OO0 nM[Q

08
08M
18
18A
18X
28A
28X
40X

Ooonooonood

BASIC COMMANDS |

let

let
Syntax:
{LET} variable = {-} value ?? value ...
- Variable will be operated on.
- Value(s) are variables/constants which operate on variable.

Function:
Perform variable manipulation (wordsize-to-wordsize). Maths is performed
strictly from left to right. The ‘let’ keyword is optional.

Information:

The microcontroller supports word (16 bit) mathematics. Valid integers are O to
65335. All mathematics can also be performed on byte (8 bit) variables (0-255).
The microcontroller does not support fractions or negative numbers.

However it is sometimes possible to rewrite equations to use integers instead of
fractions, e.g.

letwl=w2/5.7

is not valid, but

letwl =w2 *10/57

is mathematically equal and valid.

The mathematical functions supported are:

+ ; add

- ; subtract

* ; multiply (returns low word of result)

kel ; multiply (returns high word of result)

/ ; divide (returns quotient)

1/ (or %) ; modulus divide (returns remainder)

MAX ; limit value to a maximum value

MIN ; limit value to a minimum value

& (or AND) ; bitwise AND

| (or OR) ; bitwise OR (typed as SHIFT +\ on UK keyboard)

n (or XOR) ; bitwise XOR (typed as SHIFT + 6 on UK keyboard)
&/ (or ANDNOT); bitwise AND NOT (NB this is not the same as NAND)

|/ (or ORNOT) ; bitwise OR NOT (NB this is not the same as NOR)

N (or XNOR) ; bitwise XOR NOT (same as XNOR)

There is no shift left (<<) or shift right (>>) function. However the same function
can be achieved by multiplying by 2 (shift left) or dividing by 2 (shift right).

All mathematics is performed strictly from left to right. It is not possible to
enclose part equations in brackets e.g.

letwl=w2/(2+Db3)
is not valid. This would be entered as

letb3= 2+ b3

let wl=w2/b3

(c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 5.2 05/2004

WWW. picaxe.co.uk

Section 2 IE

BASIC COMMANDS |

The addition (+) and subtraction (-) commands work as expected. Note that the
variables will overflow without warning if the maximum or minimum value is
exceeded (0-255 for bytes variables, 0-65335 for